Skip to main content

Advertisement

Log in

Impurities in hydride gases part 2: Investigation of trace CO2 in the liquid and vapor phases of ultra-pure ammonia

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ammonia (NH3) as a precursor for epitaxial nitride films is required to be free of trace oxygenated impurities, such as CO2, that have been shown to negatively affect growth processes and device performance. Carbon dioxide can react reversibly with the NH3 gas to form ammonium carbamate, NH4COONH2 (a solid with low solubility in liquid NH3) and, therefore, can be present in cylinder sources both in the free and chemically bound form. A gas chromatograph (GC)-based method has been developed to accurately quantify the total CO2 content in both vapor- and liquid-phase NH3 streams. A heated GC-sampling manifold is used to thermally decompose any NH4COONH2 present in the sample or calibration standard so that all CO2 is analyzed in its free form. Several commercial cylinder sources maintained at room temperature were analyzed by this method, and in all cases, equilibrium concentrations of <75 parts-per-billion by volume (ppbv) CO2 were present in the gas phase as long as residual liquid was present. Slightly higher concentrations were found in the liquid phase, and upon exhaustion of the liquid phase and heating, CO2 levels strongly increased to parts-per-million by volume (ppmv) levels. The excess CO2 is likely adsorbed on the cylinder walls or dispersed in the liquid as solid NH4COONH2. These results are consistent with thermodynamic calculations based on equilibrium data for the carbamate system available in the literature. To meet the purity requirements of organo-metallic vapor-phase epitaxy processes, the performance of an adsorbent-based purifier that is capable of removing residual CO2 in both free and chemically bound forms from NH3 streams is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Parish, S. Keller, S.P. Denbaars, and U.K. Mishra, J. Electron. Mater. 29, 15 (2000).

    CAS  Google Scholar 

  2. G.A. Slack, L.J. Schowalter, D. Morelli, and J.A. Freitas Jr., J. Cryst. Growth 246, 287 (2002).

    Article  CAS  Google Scholar 

  3. D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg, J. Cryst. Growth 242, 55 (2002).

    Article  CAS  Google Scholar 

  4. H. Kim, F.J. Fälth, and T.G. Andersson, J. Electron. Mater. 30, 1343 (2001).

    CAS  Google Scholar 

  5. J.A. Freitas Jr., W.J. Moore, B.V. Shanabrook, G.C.B. Braga, and S.K. Lee, J. Cryst. Growth 246, 307 (2002).

    Article  CAS  Google Scholar 

  6. M. Hata, H. Takata, T. Yako, N. Fukuhara, T. Maeda, and Y. Uemura, J. Cryst. Growth 124, 427 (1992).

    Article  CAS  Google Scholar 

  7. K.M. Coward, A.C. Jones, M.E. Pemble, S.A. Rushworth, L.M. Smith, and T. Martin, J. Electron. Mater. 29, 151 (2000).

    CAS  Google Scholar 

  8. L.M. Smith, S.A. Rushworth, M.S. Ravetz, R. Odedra, R. Kanjolia, C. Agert, F. Dimroth, U. Schubert, and A.W. Bett, J. Cryst. Growth 221, 86 (2000).

    Article  CAS  Google Scholar 

  9. C.C. Allgood, Solid State Technol. 42, 63 (1999).

    CAS  Google Scholar 

  10. H.H. Funke, M.W. Raynor, B. Yucelen, and V.H. Houlding, J. Electron. Mater. 30, 1438 (2001).

    CAS  Google Scholar 

  11. M. Raynor, D. Sims, H. Funke, T. Watanabe, D. Fraenkel, J. Vininski, R. Torres, V. Houlding, and M. Owens, Proc. CS-Max 2001, Boston, MA, 9–11 July 2001.

  12. D.A. Rodgers and F. Porter, U.S. patent 2,214,068 (10 September 1940).

  13. L.J. Bagnell, A.M. Hodges, M. Linton, and A.W.-H. Mau, Aus. J. Chem. 42, 1819 (1989).

    Article  CAS  Google Scholar 

  14. M.A. Isla, H.A. Irazoqui, and C.M. Genoud, Ind. Eng. Chem. Res. 32, 2662 (1993).

    Article  CAS  Google Scholar 

  15. N.W. Krase and V.L. Gaddy, J. Ind. Eng. Chem. 14, 611 (1922).

    Article  CAS  Google Scholar 

  16. I. Mavrovic, A.R. Shirley Jr., and G.R. Coleman, in Kirk-Othmer Encyclopedia of Chemical Technology, ed. J.I. Kroschwitz (New York: Wiley & Sons, 1998), 4th edition supplement, pp. 597–621.

    Google Scholar 

  17. D. Koschel, ed., Gmelins Handbuch der Anorganischen Chemie (Weinheim, Germany: Verlag, 1971), 8th edition, vol. 14(DI), pp. 391–396.

    Google Scholar 

  18. S. Inoue, K. Kanai, and E. Otsuka, Bull. Chem. Soc. Jpn. 45, 1339 (1972).

    Article  CAS  Google Scholar 

  19. M. Raynor, D. Sims, J. Welchhans, R. Kubicek, T. Watanabe, R. Tores, and V.H. Houlding, Proc. SEMICON West 2002, San Francisco, CA, 22–24 July 2002.

  20. T.J. Bzik, G.H. Smudde Jr., D.A. Zatko, and J.V. Martinez de Pinillos, in Specialty Gas Analysis — A Practical Guide Book, ed. J.D. Hogan (New York: Wiley-VCH, 1996), p. 163.

    Google Scholar 

  21. G.L. Long and J.D. Winefordner, Anal. Chem. 55, 712A (1983).

    Google Scholar 

  22. V.A. Lishnevskii and T.A. Madzievskaya, Russ. J. Phys. Chem. 56, 1342 (1982).

    Google Scholar 

  23. V.A. Lishnevskii, T.A. Madzievskaya, and M.I. Konyushko, Russ. J. Phys. Chem. 61, 36 (1987).

    Google Scholar 

  24. B.R. Ramachandran, A.M. Halpern, and E.D. Glendening, J. Phys. Chem. A 102, 3934 (1998).

    Article  CAS  Google Scholar 

  25. R.N. Bennett, P.D. Ritchie, D. Roxburgh, and J. Thomson, Trans. Faraday Soc. 49, 925 (1953).

    Article  CAS  Google Scholar 

  26. D. Janjic, Helvetica Chimica Acta 47, 1879 (1964).

    Article  CAS  Google Scholar 

  27. R.W. Parry and S.G. Shore, J. Am. Chem. Soc. 80, 15 (1958).

    Article  CAS  Google Scholar 

  28. A.F. Clifford and M. Gimenez-Huguet, J. Am. Chem. Soc. 82, 1024 (1960).

    Article  CAS  Google Scholar 

  29. G. Fauser, U.S. patent 3,378,585 (16 April 1968).

  30. M. Hirano and M. Tsunoda, U.S. patent 2,807,574 (24 September 1957).

  31. W. Heitmann, U.S. patent 5,427,759 (27 June 1995).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funke, H.H., Welchhans, J., Watanabe, T. et al. Impurities in hydride gases part 2: Investigation of trace CO2 in the liquid and vapor phases of ultra-pure ammonia. J. Electron. Mater. 33, 873–880 (2004). https://doi.org/10.1007/s11664-004-0214-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0214-7

Key words

Navigation