Skip to main content
Log in

Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide

  • Regular Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Spin coating is a simple process for rapidly depositing thin, solid polymeric films onto relatively flat substrates. Evaporation occurs during spinning of the relatively volatile species in any solution. The curing behavior of spin-coated polymeric film is influenced by the evaporation of any reactive component. An investigation was carried out on a silicon substrate to study the effects of spin coating on the curing behavior of the epoxy adhesive. The degree of curing for both spin and without spin-coated epoxy adhesive was measured by Fourier-transform infrared spectroscopy (FTIR). A slower curing reaction rate was observed for the spin-coated epoxy adhesive. The composition gradient established by solvent evaporation during spinning is responsible for the slower curing reaction rate of the spin-coated epoxy adhesive. From this study, it is proposed to use solvents that are less volatile and allow a greater part of the thinning behavior to occur without significant changes in the fluid properties during the spinning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Lee, W.Y. Hwang, M.C. Oh, H. Park, T. Zyung, and J.J. Kim, Appl. Phys. Lett. 71, 3779 (1997).

    Article  CAS  Google Scholar 

  2. Y.C. Chan, M.A. Uddin, M.O. Alam, and H.P. Chan, J. Electron. Mater. 32, 131 (2003).

    CAS  Google Scholar 

  3. J.Y. Zhang, G. Windall, and I.W. Boyd, Appl. Surf. Sci. 186, 568 (2002).

    Article  CAS  Google Scholar 

  4. D.P. Birnie, J. Non-Cryst. Solids 218, 174 (1997).

    Article  CAS  Google Scholar 

  5. J.G.P. Goossens, S. Rastogi, H.E.H. Meijer, and P.J. Lemstra, Polymer 39, 6577 (1998).

    Article  CAS  Google Scholar 

  6. X. Li, Y.C. Han, and L.J. An, Langmuir 18, 5293 (2002).

    Article  CAS  Google Scholar 

  7. J. Mohan, Organic Spectroscopy: Principles and Applications (New Delhi: Narosa Publishing House, 2000), pp. 60–61.

    Google Scholar 

  8. C.A. May, Epoxy Resins (New York: Marcel Dekker Inc., 1998), pp. 603–718.

    Google Scholar 

  9. J. Liu, Conductive Adhesives for Electronics Packaging (Isle of Man, British Isles: Electrochemical Publications Ltd., 1998), pp. 99–116.

    Google Scholar 

  10. Shimadzu Do Brasil Comércio Ltda., Analysis Guidebook, http://www.shimadzu.com.br/analitica/aplicacoes/FTIR/2_22_1.pdf

  11. F. Meyer, G. Sanz, A. Eceiza, and I. Mondragon, Polymer 36, 1407 (1995).

    Article  CAS  Google Scholar 

  12. L.M. Manske, D.B. Graves, and W.G. Oldham, Appl. Phys. Lett. 56, 2348 (1990).

    Article  Google Scholar 

  13. S.F. Kistler and P.M. Schweizer, eds. Liquid Film Coating: Scientific Principles and Their Technological Implications (London: Chapman & Hall, 1997), pp. 713–717.

    Google Scholar 

  14. K.J. Skrobis, D.D. Denton, and A.V. Skrobis, Polym. Eng. Sci. 30, 193 (1990).

    Article  CAS  Google Scholar 

  15. S.K. Kim, J.Y. Yoo, and H.K. Oh, J. Vac. Sci. Technol. B 20, 2206 (2002).

    Article  CAS  Google Scholar 

  16. D.P. Birnie, J. Mater. Res. 16, 1145 (2001).

    CAS  Google Scholar 

  17. G.A. Luurtsema (Master’s thesis, University of California, Berkeley, 1997).

    Google Scholar 

  18. C.S.B. Ruiz, L.D.B. Machado, J.E. Volponi, and E.S. Pino, Nuclr. Instr. Methods in Phys. Res. Sec. B: Beam Interactions Mater. Atoms 208, 309 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uddin, M.A., Chan, H.P., Chow, C.K. et al. Effect of spin coating on the curing rate of epoxy adhesive for the fabrication of a polymer optical waveguide. J. Electron. Mater. 33, 224–228 (2004). https://doi.org/10.1007/s11664-004-0184-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-004-0184-9

Key words

Navigation