Skip to main content

Fabrication and Properties of Spin-Coated Polymer Films

  • Chapter
  • First Online:
Nano-size Polymers

Abstract

Spin coating is an extensively used method for fabricating highly uniform thin polymer film coatings with high reproducibility over both small and large areas. Due to many advantages, such as low cost, high uniformity, superior control and molecular and atomic order of the constituent particles, the spin coating process has been extensively studied and applied in various potential fields. Micro-electronics is the dominating field where spin coating is applied. Other prominent fields with application of spin coating include protective coatings, optics, membrane formation, anti-reflection coatings, sensors and others. This chapter deals with the fundamental aspects influencing the spin coating process and the basic theory behind it. Various fabrication methods that employ spin coating are discussed in the later part of the chapter along with the properties that the substrates gain due to the process. A comprehensive discussion on spin coating is provided here that will help to understand the basic process, the various fabrication methods and the properties and structures of the spin-coated polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall DB, Underhill P, Torkelson JM (1998) Spin coating of thin and ultrathin polymer films. Polym Eng Sci 38(12):2039–2045

    Article  Google Scholar 

  2. Toolan DT, Howse JR (2013) Development of in situ studies of spin coated polymer films. J Mater Chem C 1(4):603–616

    Article  Google Scholar 

  3. Mellbring O, Kihlman Øiseth S, Krozer A, Lausmaa J, Hjertberg T (2001) Spin coating and characterization of thin high-density polyethylene films. Macromolecules 34(21):7496–7503. doi:10.1021/ma000094x

    Article  Google Scholar 

  4. Prest WM, Luca DJ (1980) The alignment of polymers during the solvent-coating process. J Appl Phys 51(10):5170–5174. doi:10.1063/1.327464

    Article  Google Scholar 

  5. Despotopoulou M, Frank C, Miller R, Rabolt J (1996) Kinetics of chain organization in ultrathin poly (di-n-hexylsilane) films. Macromolecules 29(18):5797–5804

    Article  Google Scholar 

  6. Forrest J, Dalnoki-Veress K, Dutcher J (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56(5):5705

    Article  Google Scholar 

  7. Bartczak Z, Argon A, Cohen R, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer 40(9):2331–2346

    Article  Google Scholar 

  8. Muratoglu O, Argon A, Cohen R, Weinberg M (1995) Toughening mechanism of rubber-modified polyamides. Polymer 36(5):921–930

    Article  Google Scholar 

  9. Chang D, Yoon D, Ro M, Hwang I, Park I, Shin D (2003) Synthesis and characteristics of protective coating on thin cover layer for high density-digital versatile disc. Jpn J Appl Phys 42(2S):754

    Article  Google Scholar 

  10. Norrman K, Ghanbari-Siahkali A, Larsen N (2005) 6 Studies of spin-coated polymer films. Ann Rep Sect “C” (Phys Chem) 101:174–201

    Google Scholar 

  11. Callewaert M, Gohy J-F, Dupont-Gillain CC, Boulangé-Petermann L, Rouxhet PG (2005) Surface morphology and wetting properties of surfaces coated with an amphiphilic diblock copolymer. Surf Sci 575(1):125–135

    Article  Google Scholar 

  12. Oliveira AR, Zarbin AJ (2005) Um procedimento simples e barato para a construção de um equipamento “dip-coating” para deposição de filmes em laboratório. Quim Nova 28(1):141–144

    Article  Google Scholar 

  13. Willey RR (2002) Practical design and production of optical thin films. CRC Press, Boca Raton

    Google Scholar 

  14. Beers KL, Douglas JF, Amis EJ, Karim A (2003) Combinatorial measurements of crystallization growth rate and morphology in thin films of isotactic polystyrene. Langmuir 19(9):3935–3940

    Article  Google Scholar 

  15. Belleville P, Bonnin C, Priotton J-J (2000) Room-temperature mirror preparation using sol-gel chemistry and laminar-flow coating technique. J Sol-Gel Sci Technol 19(1–3):223–226

    Article  Google Scholar 

  16. Ichiki M, Zhang L, Yang Z, Ikehara T, Maeda R (2004) Thin film formation on non-planar surface with use of spray coating fabrication. Microsyst Technol 10(5):360–363

    Article  Google Scholar 

  17. Ju D-Y, Ji V, Gassot H (2004) Computer predictions of thermo-mechanical behavior and residual stresses in spray coating process. In: Journal de Physique IV (Proceedings). EDP sciences, pp 381–388

    Google Scholar 

  18. Mostaghimi J, Chandra S, Ghafouri-Azar R, Dolatabadi A (2003) Modeling thermal spray coating processes: a powerful tool in design and optimization. Surf Coat Technol 163:1–11

    Article  Google Scholar 

  19. Tucker RC (2002) Thermal spray coatings: broad and growing applications. Int J Powder Metall 38(7):45–53

    Google Scholar 

  20. Singh RK, Narayan J (1990) Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys Rev B 41(13):8843

    Article  Google Scholar 

  21. Yasuda H (2012) Plasma polymerization. Academic press, New York

    Google Scholar 

  22. Minko S, Patil S, Datsyuk V, Simon F, Eichhorn K-J, Motornov M, Usov D, Tokarev I, Stamm M (2002) Synthesis of adaptive polymer brushes via “grafting to” approach from melt. Langmuir 18(1):289–296

    Article  Google Scholar 

  23. Bornside D, Macosko C, Scriven L-E (1987) On the modeling of spin coating. J Imaging Technol 13(4):122–130

    Google Scholar 

  24. Schubert D, Dunkel T (2003) Spin coating from a molecular point of view: its concentration regimes, influence of molar mass and distribution. Mat Res Innovat 7(5):314–321. doi:10.1007/s10019-003-0270-2

    Article  Google Scholar 

  25. Scriven L (1988) Physics and applications of dip coating and spin coating. In: MRS proceedings. Cambridge University Press, Cambridge, p 717

    Google Scholar 

  26. Chen D (2001) Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol Energy Mater Sol Cells 68(3):313–336

    Article  Google Scholar 

  27. Meyerhofer D (1978) Characteristics of resist films produced by spinning. J Appl Phys 49(7):3993–3997

    Article  Google Scholar 

  28. Walker P, Thompson J (1922) Some physical properties of paints. In: Proceedings of the American Society of testing materials, vol 464, p 100

    Google Scholar 

  29. Apperloo JJ, Janssen R, Nielsen MM, Bechgaard K (2000) Doping in solution as an order-inducing tool prior to film formation of regio-irregular polyalkylthiophenes. Adv Mater 12(21):1594–1597

    Article  Google Scholar 

  30. Arias A, Corcoran N, Banach M, Friend R, MacKenzie J, Huck W (2002) Vertically segregated polymer-blend photovoltaic thin-film structures through surface-mediated solution processing. Appl Phys Lett 80(10):1695–1697

    Article  Google Scholar 

  31. Arias A, MacKenzie J, Stevenson R, Halls J, Inbasekaran M, Woo E, Richards D, Friend R (2001) Photovoltaic performance and morphology of polyfluorene blends: a combined microscopic and photovoltaic investigation. Macromolecules 34(17):6005–6013

    Article  Google Scholar 

  32. Burroughes J, Bradley D, Brown A, Marks R, Friend R, Burn PL, Holmes AB (1990) Nature (London) 347:539–541. Burroughes539347Nature (London)

    Google Scholar 

  33. Chang J-F, Sun B, Breiby DW, Nielsen MM, Sölling TI, Giles M, McCulloch I, Sirringhaus H (2004) Enhanced mobility of poly (3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem Mater 16(23):4772–4776

    Article  Google Scholar 

  34. Corcoran N, Arias A, Kim J, MacKenzie J, Friend R (2003) Increased efficiency in vertically segregated thin-film conjugated polymer blends for light-emitting diodes. Appl Phys Lett 82(2):299–301

    Article  Google Scholar 

  35. Geens W, Shaheen SE, Wessling B, Brabec CJ, Poortmans J, Sariciftci NS (2002) Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent. Org Electron 3(3):105–110

    Article  Google Scholar 

  36. Klauk H, Halik M, Zschieschang U, Schmid G, Radlik W, Weber W (2002) High-mobility polymer gate dielectric pentacene thin film transistors. J Appl Phys 92(9):5259–5263

    Article  Google Scholar 

  37. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet JM (2003) Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater 15(18):1519–1522

    Article  Google Scholar 

  38. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412. doi:10.1016/j.solmat.2008.10.004

    Article  Google Scholar 

  39. Salleo A, Chabinyc M, Yang M, Street R (2002) Polymer thin-film transistors with chemically modified dielectric interfaces. Appl Phys Lett 81(23):4383–4385

    Article  Google Scholar 

  40. Shi Y, Liu J, Yang Y (2000) Device performance and polymer morphology in polymer light emitting diodes: the control of thin film morphology and device quantum efficiency. J Appl Phys 87(9):4254–4263

    Article  Google Scholar 

  41. Sirringhaus H, Brown P, Friend R, Nielsen M, Bechgaard K, Langeveld-Voss B, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM (1999) Nature 401:1038

    Google Scholar 

  42. Sirringhaus H, Brown P, Friend R, Nielsen MM, Bechgaard K, Langeveld-Voss B, Spiering A, Janssen R, Meijer E (2000) Microstructure–mobility correlation in self-organised, conjugated polymer field-effect transistors. Synth Met 111:129–132

    Article  Google Scholar 

  43. Sirringhaus H, Tessler N, Friend RH (1998) Integrated optoelectronic devices based on conjugated polymers. Science 280(5370):1741–1744

    Article  Google Scholar 

  44. Douglas P, Eaton K (2002) Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films. Sens Actuators B: Chem 82(2):200–208

    Article  Google Scholar 

  45. Eaton K (2002) A novel colorimetric oxygen sensor: dye redox chemistry in a thin polymer film. Sens Actuators B: Chem 85(1):42–51

    Article  Google Scholar 

  46. Mirkhalaf F, Schiffrin D (2000) Metal-ion sensing by surface plasmon resonance on film electrodes. J Electroanal Chem 484(2):182–188

    Article  Google Scholar 

  47. Penza M, Anisimkin V (1999) Surface acoustic wave humidity sensor using polyvinyl-alcohol film. Sens Actuators, A 76(1):162–166

    Article  Google Scholar 

  48. Walheim S, Schäffer E, Mlynek J, Steiner U (1999) Nanophase-separated polymer films as high-performance antireflection coatings. Science 283(5401):520–522

    Article  Google Scholar 

  49. Yan X, Liu G, Dickey M, Willson CG (2004) Preparation of porous polymer membranes using nano-or micro-pillar arrays as templates. Polymer 45(25):8469–8474

    Article  Google Scholar 

  50. Xu T, Kim H-C, DeRouchey J, Seney C, Levesque C, Martin P, Stafford C, Russell T (2001) The influence of molecular weight on nanoporous polymer films. Polymer 42(21):9091–9095

    Article  Google Scholar 

  51. Bornside DE, Macosko CW, Scriven LE (1989) Spin coating: one-dimensional model. J Appl Phys 66(11):5185–5193. doi:10.1063/1.343754

    Article  Google Scholar 

  52. Münch A, Please CP, Wagner B (2011) Spin coating of an evaporating polymer solution. Phys Fluids (1994-present) 23(10):102101

    Google Scholar 

  53. Emslie AG, Bonner FT, Peck LG (1958) Flow of a viscous liquid on a rotating disk. J Appl Phys 29(5):858–862. doi:10.1063/1.1723300

    Article  Google Scholar 

  54. Acrivos A, Shah MJ, Petersen EE (1960) On the flow of a non-newtonian liquid on a rotating disk. J Appl Phys 31(6):963–968. doi:10.1063/1.1735785

    Article  Google Scholar 

  55. Flack WW, Soong DS, Bell AT, Hess DW (1984) A mathematical model for spin coating of polymer resists. J Appl Phys 56(4):1199–1206

    Article  Google Scholar 

  56. Jenekhe SA (1984) Effects of solvent mass transfer on flow of polymer solutions on a flat rotating disk. Ind Eng Chem Fundam 23(4):425–432

    Article  Google Scholar 

  57. Lawrence C (1988) The mechanics of spin coating of polymer films. Phys Fluids (1958–1988) 31(10):2786–2795

    Google Scholar 

  58. Sukanek PC (1985) Spin coating. J Imaging Technol 11(4):184–190

    Google Scholar 

  59. Chen B (1983) Investigation of the solvent-evaporation effect on spin coating of thin films. Polym Eng Sci 23(7):399–403

    Article  Google Scholar 

  60. Daughton W, Givens F (1982) An investigation of the thickness variation of spun-on thin films commonly associated with the semiconductor industry. J Electrochem Soc 129(1):173–179

    Article  Google Scholar 

  61. Givens F, Daughton W (1979) On the uniformity of thin films: a new technique applied to polyimides. J Electrochem Soc 126(2):269–272

    Article  Google Scholar 

  62. Higgins BG (1986) Film flow on a rotating disk. Phys Fluids 29(11):3522

    Article  Google Scholar 

  63. Jenekhe SA (1983) The rheology and spin coating of polyimide solutions. Polym Eng Sci 23(15):830–834

    Article  Google Scholar 

  64. Kim JH, Jang J, Zin W-C (2001) Thickness dependence of the glass transition temperature in thin polymer films. Langmuir 17(9):2703–2710

    Article  Google Scholar 

  65. Lai JH (1979) An investigation of spin coating of electron resists. Polym Eng Sci 19(15):1117–1121

    Article  Google Scholar 

  66. Pham JQ, Green PF (2002) The glass transition of thin film polymer/polymer blends: interfacial interactions and confinement. J Chem Phys 116(13):5801–5806

    Article  Google Scholar 

  67. Spangler LL, Torkelson JM, Royal JS (1990) Influence of solvent and molecular weight on thickness and surface topography of spin-coated polymer films. Polym Eng Sci 30(11):644–653

    Article  Google Scholar 

  68. Washo B (1977) Rheology and modeling of the spin coating process. IBM J Res Dev 21(2):190–198

    Article  Google Scholar 

  69. Weill A, Dechenaux E (1988) The spin-coating process mechanism related to polymer solution properties. Polym Eng Sci 28(15):945–948

    Article  Google Scholar 

  70. Chang C-C, Pai C-L, Chen W-C, Jenekhe SA (2005) Spin coating of conjugated polymers for electronic and optoelectronic applications. Thin Solid Films 479(1–2):254–260. doi:10.1016/j.tsf.2004.12.013

    Article  Google Scholar 

  71. Jukes PC, Heriot SY, Sharp JS, Jones RA (2005) Time-resolved light scattering studies of phase separation in thin film semiconducting polymer blends during spin-coating. Macromolecules 38(6):2030–2032

    Article  Google Scholar 

  72. Kim J-S, Ho PK, Murphy CE, Friend RH (2004) Phase separation in polyfluorene-based conjugated polymer blends: lateral and vertical analysis of blend spin-cast thin films. Macromolecules 37(8):2861–2871

    Article  Google Scholar 

  73. Keith F, Taylor J, Chong J (1958) Heat and mass transfer from a rotating disk. DTIC document

    Google Scholar 

  74. Graessley WW (1980) Polymer chain dimensions and the dependence of viscoelastic properties on concentration, molecular weight and solvent power. Polymer 21(3):258–262

    Article  Google Scholar 

  75. Long D, Lequeux F (2001) Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur Phys J E 4(3):371–387

    Article  Google Scholar 

  76. De Gennes P (2000) Glass transitions in thin polymer films. Eur Phys J E 2(3):201–205

    Article  Google Scholar 

  77. Wallace WE, Fischer DA, Efimenko K, Wu W-L, Genzer J (2001) Polymer chain relaxation: surface outpaces bulk. Macromolecules 34(15):5081–5082

    Article  Google Scholar 

  78. Xie L, DeMaggio G, Frieze W, DeVries J, Gidley D, Hristov H, Yee A (1995) Positronium formation as a probe of polymer surfaces and thin films. Phys Rev Lett 74(24):4947

    Article  Google Scholar 

  79. Forrest J, Dalnoki-Veress K, Dutcher J, Rowat A, Stevens JR (1995) Brillouin light scattering determination of the glass transition in thin, freely-standing poly (styrene) films. In: MRS proceedings. Cambridge University Press, Cambridge, p 131

    Google Scholar 

  80. Forrest J, Dalnoki-Veress K, Stevens J, Dutcher J (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77(10):2002

    Google Scholar 

  81. Kanaya T, Miyazaki T, Watanabe H, Nishida K, Yamano H, Tasaki S, Bucknall D (2003) Annealing effects on thickness of polystyrene thin films as studied by neutron reflectivity. Polymer 44(14):3769–3773

    Article  Google Scholar 

  82. Keddie J, Jones R (1995) Glass transition behavior in ultra-thin polystyrene films. Isr J Chem 35(1):21–26

    Article  Google Scholar 

  83. Kleideiter G, Prucker O, Bock H, Frank CW, Lechner MD, Knoll W (1999) Polymer thin film properties as a function of temperature and pressure. In: Macromolecular symposia, vol 1. Wiley Online Library, pp 95–102

    Google Scholar 

  84. Lin EK, W-l Wu, Satija SK (1997) Polymer interdiffusion near an attractive solid substrate. Macromolecules 30(23):7224–7231

    Article  Google Scholar 

  85. Mansfield KF, Theodorou DN (1991) Molecular dynamics simulation of a glassy polymer surface. Macromolecules 24(23):6283–6294

    Article  Google Scholar 

  86. Orts WJ, van Zanten JH, W-l Wu, Satija SK (1993) Observation of temperature dependent thicknesses in ultrathin polystyrene films on silicon. Phys Rev Lett 71(6):867

    Article  Google Scholar 

  87. Petri D (2002) Characterization of spin-coated polymer films. J Braz Chem Soc 13(5):695–699

    Article  Google Scholar 

  88. Reiter G (1994) Dewetting as a probe of polymer mobility in thin films. Macromolecules 27(11):3046–3052

    Article  Google Scholar 

  89. Richard A (1994) Interface and surface effects on the glass-transition temperature in thin polymer films. Faraday Discuss 98:219–230

    Article  Google Scholar 

  90. Wallace W, Tan NB, Wu W, Satija S (1998) Mass density of polystyrene thin films measured by twin neutron reflectivity. J Chem Phys 108(9):3798–3804

    Article  Google Scholar 

  91. Forrest J (2002) A decade of dynamics in thin films of polystyrene: where are we now? Eur Phys J E: Soft Matter Biol Phys 8(2):261–266

    Article  Google Scholar 

  92. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13(6):1602–1617

    Article  Google Scholar 

  93. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press

    Google Scholar 

  94. Dandapat B, Layek G (1999) Spin coating in the presence of a transverse magnetic field and non-uniform rotation: a numerical study. J Phys D Appl Phys 32(19):2483

    Article  Google Scholar 

  95. Mitzi D (2008) Solution processing of inorganic materials. Wiley, New York

    Google Scholar 

  96. Li X, Han Y, An L (2003) Surface morphology control of immiscible polymer-blend thin films. Polymer 44(26):8155–8165

    Article  Google Scholar 

  97. Norrman K, Haugshøj K, Larsen N (2002) Lateral and vertical quantification of spin-coated polymer films on silicon by TOF-SIMS, XPS, and AFM. J Phys Chem B 106(51):13114–13121

    Article  Google Scholar 

  98. Anselmo AS, Dzwilewski A, Svensson K, Moons E (2013) Molecular orientation and composition at the surface of spin-coated polyfluorene: fullerene blend films. J Polym Sci, Part B: Polym Phys 51(3):176–182

    Article  Google Scholar 

  99. Anselmo AS, Lindgren L, Rysz J, Bernasik A, Budkowski A, Andersson RM, Svensson K, van Stam J, Moons E (2011) Tuning the vertical phase separation in polyfluorene: fullerene blend films by polymer functionalization. Chem Mater 23(9):2295–2302

    Google Scholar 

  100. Krebs FC, Hoffmann SV, Jørgensen M (2003) Orientation effects in self-organized, highly conducting regioregular poly (3-hexylthiophene) determined by vacuum ultraviolet spectroscopy. Synth Met 138(3):471–474

    Article  Google Scholar 

  101. Komikado T, Inoue A, Masuda K, Ando T, Umegaki S (2007) Multi-layered mirrors fabricated by spin-coating organic polymers. Thin Solid Films 515(7–8):3887–3892. doi:10.1016/j.tsf.2006.10.119

    Article  Google Scholar 

  102. Le Roux JD, Paul DR (1992) Preparation of composite membranes by a spin coating process. J Membr Sci 74(3):233–252. doi:10.1016/0376-7388(92)80064-Q

    Article  Google Scholar 

  103. Seo K-I, Jang D-S, Kim H-S, Jeong S-M (1996) Method for preparing anti-reflective coating for display devices. Google patents

    Google Scholar 

  104. Debsikdar J (1989) Broadband antireflective coating composition and method. Google Patents

    Google Scholar 

  105. Boström TK, Wäckelgård E, Westin G (2004) Anti-reflection coatings for solution-chemically derived nickel—Alumina solar absorbers. Sol Energy Mater Sol Cells 84(1–4):183–191. doi:10.1016/j.solmat.2003.12.015

    Article  Google Scholar 

  106. Chao Y-C, Chen C-Y, Lin C-A, He J-H (2011) Light scattering by nanostructured anti-reflection coatings. Energy Environ Sci 4(9):3436–3441

    Article  Google Scholar 

  107. Chen JY, Sun KW (2010) Enhancement of the light conversion efficiency of silicon solar cells by using nanoimprint anti-reflection layer. Sol Energy Mater Sol Cells 94(3):629–633. doi:10.1016/j.solmat.2009.11.028

    Article  Google Scholar 

  108. Meyers ST, Anderson JT, Hong D, Hung CM, Wager JF, Keszler DA (2007) Solution-processed aluminum oxide phosphate thin-film dielectrics. Chem Mater 19(16):4023–4029

    Article  Google Scholar 

  109. Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang D, Miyasaka M, Takeuchi Y (2006) Solution-processed silicon films and transistors. Nature 440(7085):783–786

    Article  Google Scholar 

  110. Tanaka H, Matsuki Y, Shimoda T, Iwasawa H, Aoki T, Yudasaka I, Wang D, Miyasaka M, Furusawa M (2006) Solution-processed silicon films and transistors using novel liquid silicon materials. Digest Tech Papers AM-FPD 6:27–30

    Google Scholar 

  111. Tanaka H, Iwasawa H, Wang D, Toyoda N, Aoki T, Yudasaka I, Matsuki Y, Shimoda T, Furusawa M (2007) Spin-on n-type silicon films using phosphorous-doped polysilanes. Jpn J Appl Phys 46(10L):L886

    Article  Google Scholar 

  112. Gul VE (1996) Structure and properties of conducting polymer composites, vol 8. VSP

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, R., Chanda, A. (2016). Fabrication and Properties of Spin-Coated Polymer Films. In: Fakirov, S. (eds) Nano-size Polymers. Springer, Cham. https://doi.org/10.1007/978-3-319-39715-3_10

Download citation

Publish with us

Policies and ethics