Skip to main content
Log in

Influence of oxides on friction during Cu CMP

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, we investigated the frictional behavior of copper CMP. Using a laboratory polishing set up, we polished Cu with designed polishing media. After that the copper surface and the fumed silica particles Cu were analyzed. The surface analysis techniques used are the field emission SEM, the field-emission high-resolution analytical TEM, x-ray spectroscopy, and XPS. We found evident difference in friction value using different polishing media. Discussions lead to three mechanisms during copper CMP. The nature of copper oxides has a profound influence on friction and might be directly related to defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Larsen-Basse and H. Liang, Wear, 233–235, 647 (1999).

    Article  Google Scholar 

  2. F.B. Kaufman, D.B. Thompson, R.E. Broadie, M.A. Jaso, W.L. Gutherie, D.J. Pearson, and M.B. Small, J. Electrochem. Soc. 138, 3460 (1991).

    Article  CAS  Google Scholar 

  3. D. Stein, D. Hetherington, T. Guilinger, and J. Cecchi, J. Eletrochem. Soc., 145, 3190 (1998).

    Article  CAS  Google Scholar 

  4. J.M. Martin, Th. Le Mogne, C. Grossiord, and Th. Palermo, Trib. Lett. 3, 87 (1997).

    Article  CAS  Google Scholar 

  5. J.M. Martin, Trib. Lett., 6, 1 (1999).

    Article  CAS  Google Scholar 

  6. J.T. Dickinson, N.-S. Park, M-W. Kim, and S.C. Langford, Trib. Lett. 3, 69 (1997).

    Article  CAS  Google Scholar 

  7. O. Kubaschewaki, and B.E. Hopkins, Oxidation of Metals and Alloys (London: Butterworths, 1953).

    Google Scholar 

  8. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, (Houston, TX: NACE, 1975).

    Google Scholar 

  9. J.M. Steigerwald, S.P. Murarka, and R.J. Gutmann, Proc. MRS Symp. Spring, 55 (1995).

  10. V. Brusic, M.A. Frisch, B.N. Eldridge, F.P. Novak, F.B. Kaufman, B.M. Rush, and G.S. Frankel, J. Electrochem. Soc. 138, 2253 (1991).

    Article  CAS  Google Scholar 

  11. G.S. Braely and H.R. Clauser, Materials Handbook, 3rd edition, (New York: McGraw-Hill, Inc., 1991).

    Google Scholar 

  12. C.T. Lynch, CRC Handbook of Materials Science, Vol. I, General Properties, (Boca Raton, FL: CRC Press, Inc., 1991).

    Google Scholar 

  13. M. Hoshino, H. Suehiro, K. Kasai, and J. Komeno, Jpn. J. Appl. Phys. 32, L392 (1993).

    Article  CAS  Google Scholar 

  14. V. Brusic, D. Scherber, F. Kaufman, R. Kistler, and C. Streinz, Proc. 1st Symp. on CMP in IC Device Manufacturing (Pennington, NJ: Electrochem. Soc., 1996).

    Google Scholar 

  15. C. Streinz, T. Myers, and C. Yu, Proc. 5th Int. Symp. CMP in IC Device Mfg. (Pennington, NJ: Electrochem. Soc., 1996), p. 159).

    Google Scholar 

  16. H. Hirabayashi, M. Higuchi, M. Kinoshita, H. Kaneko, N. Hayasaka, K. Mase, and J. Oshima, Proc. First Int. CMP for VLSI/ULSI Multilevel Interconnection Conf. (CMP-MIC) (1996), p. 22.

  17. CRC Handbook of Chemistry and Physics, 68th Edition (Boca Raton, FL: CRC Press, 1987–1988), p. B-89.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Argonne National Laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Martin, JM. & Lee, R. Influence of oxides on friction during Cu CMP. J. Electron. Mater. 30, 391–395 (2001). https://doi.org/10.1007/s11664-001-0049-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-001-0049-4

Key words

Navigation