Skip to main content
Log in

Enhanced diffusion and interdiffusion in HgCdTe from fermi-level effects

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Excessive dopant or compositional mixing (interdiffusion) during the processing of HgCdTe photodiodes can lead to significant reductions in device performance. With the advent of multi-color and wider bandgap detectors, processes developed for single color LWIR and MWIR devices may not be transferable to the more complex structures. An important factor to account for in processing multicolor and wider gap HgCdTe is the effect of the Fermi level on point defect (PD) concentrations. In general, the density of PDs that have donor states in the band gap will be boosted in the presence of acceptors through the energy gained by the donor state electrons dropping into the vacant acceptor states. The density of PDs that have acceptor states in the band gap will be boosted in the presence of donors through a similar compensation mechanism. This Fermi-level effect is increasingly more important as the band gap is widened. Since almost all diffusion is mediated by either native and/or dopant point defects, and the intrinsic carrier concentration is relatively low at typical processing temperatures, significant broadening of composition and dopant profiles can occur in moderately and heavily doped HgCdTe. In this paper, we illustrate the Fermi-level effect on diffusion with two examples: compositional interdiffusion in multicolor detectors and diffusion of indium in MWIR and SWIR detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Leute, H.M. Schmidke, W. Stratmann, and W. Winking, Phys. Stat. Sol. A 67, 183 (1981).

    Article  CAS  Google Scholar 

  2. M.-F. Tang and D.A. Stevenson, Appl. Phys. Lett. 50, 1272 (1987).

    Article  CAS  Google Scholar 

  3. M.-S. Tang and D.A. Stevenson, J. Vac. Sci. and Technol. B 7, 544 (1989).

    Article  CAS  Google Scholar 

  4. K. Zanio, J. Vac. Sci. Technol. A 4, 2106 (1986).

    Article  CAS  Google Scholar 

  5. K. Zanio and T. Massopust, J. Electron. Mater. 15, 103 (1986).

    Article  CAS  Google Scholar 

  6. S. Holander-Gleixner, H.G. Robinson, and C.R. Helms, J. Electron. Mater. 27, 672 (1998).

    Article  CAS  Google Scholar 

  7. M.L. Law, http://www.tec.ufl.edu/~flooxs/ (1998).

  8. D.W. Yergeau, E.C. Kan, M.J. Gander, and R.W. Dutton, Simulation of Semicond. Devices and Processes (Wein, Austria: Springer-Verlag, 1995), p. 66.

    Google Scholar 

  9. P.R. Bratt and T.N. Casselman, J. Vac. Sci. Technol. A 1, 238 (1985).

    Article  Google Scholar 

  10. H.G. Robinson, unpublished data.

  11. W.D. Laidig, N. Holonyak, M.D. Carmas, K. Hess, J.J. Coleman, P.D. Dapkus, and J. Bardeen, Appl. Phys. Lett. 38, 776 (1981).

    Article  CAS  Google Scholar 

  12. J.W. Lee and W.D. Laidig, J. Electron. Mater. 13, 147 (1984).

    Article  CAS  Google Scholar 

  13. T.Y. Tan, U. Gösele, and B.P.R. Marioton, Mater. Res. Soc. Symp. Proc. 104, 605 (1988).

    CAS  Google Scholar 

  14. E.P. Zucker, A. Hashimoto, T. Fukunaga, and N. Watanabe, Appl. Phys. Lett. 54, 564 (1989).

    Article  CAS  Google Scholar 

  15. H. Zimmerman, U. Gösele, and T.Y. Tan, J. Appl. Phys. 73, 150 (1993).

    Article  Google Scholar 

  16. W. Shockley and J.T. Last, Phys. Rev. 107, 392 (1957).

    Article  Google Scholar 

  17. J.C. Brice and P. Capper, EMIS Datareviews Series, ed. J.C. Brice and P. Capper (London: INSPEC Inst. of Electrical Eng., 1987).

    Google Scholar 

  18. G. Weck and K. Wandel, J. Vac. Sci. Technol. A 12, 3023 (1994).

    Article  CAS  Google Scholar 

  19. A.V. Gorshkov, F.A. Zaitov, G.M. Shalyapina, and S.B. Shangin, Sov. Phys. Solid State 25, 1532 (1983).

    Google Scholar 

  20. S. Margilit and Y. Nemirovsky, J. Electrochem. Soc. 127, 1406 (1980).

    Article  Google Scholar 

  21. T.H. Meyers, K.A. Harris, R.W. Yanka, L.M. Mohnkern, R.J. Williams, and G.K. Dudoff, J. Vac. Sci. Technol. B 10, 1438 (1992).

    Article  Google Scholar 

  22. D. Shaw, Phys. Stat. Solidi A 89, 173 (1985).

    Article  CAS  Google Scholar 

  23. J. Wong and R.J. Roedel, J. Vac. Sci. Technol. A 9, 2258 (1991).

    Article  CAS  Google Scholar 

  24. D. Shaw, J. Electron. Mater. 24, 587 (1995).

    Article  CAS  Google Scholar 

  25. W. Jüngling, P. Pilcher, S. Selberherr, E. Guerrero, and H.W. Pötzl, IEEE Trans. on Electron. Dev. ED-32, 156 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, H.G., Berding, M.A., Hamilton, W.J. et al. Enhanced diffusion and interdiffusion in HgCdTe from fermi-level effects. J. Electron. Mater. 29, 657–663 (2000). https://doi.org/10.1007/s11664-000-0201-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0201-6

Key words

Navigation