Skip to main content
Log in

Electrical Properties of the V-Defects of Epitaxial HgCdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The manufacturing process of wide-band-gap matrix photodetector devices and miniaturization of their individual pixels gave rise to increased demands on the material quality and research methods. In the present paper we propose using the methods of atomic-force microscopy to study the local distribution of electrical properties of the V-defects that form in epitaxial films of HgCdTe during their growth process via molecular beam epitaxy. We demonstrate that a complex approach to studying the electrical properties of a predefined region of a V-defect allows one to obtain more detailed information on its properties. Using scanning spreading resistance microscopy, we show that, for a V-defect when the applied bias is increased, the surface area that participates in the process of charge carrier transfer also increases almost linearly. The presence of a potential barrier on the periphery of individual crystal grains that form the V-defect interferes with the flow of current and also affects the distribution of surface potential and capacitive contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rogalski, Infrared Detectors (Nauka, Novosibirsk, 2003).

    Google Scholar 

  2. E.V. Permikina, A.S. Kashuba, and V.V. Arbenina, Inorg. Mater. (2012). doi:10.1134/S0020168512070126.

    Google Scholar 

  3. V.A. Novikov, D.V. Grigoryev, D.A. Bezrodnyy, and S.A. Dvoretsky, Appl. Phys. Lett. (2014). doi:10.1063/1.4895573.

    Google Scholar 

  4. Y.G. Sidorov, S.A. Dvoretskii, V.S. Varavin, N.N. Mikhailov, M.V. Yakushev, and I.V. Sabinina, Semiconductors (2001). doi:10.1134/1.1403569.

    Google Scholar 

  5. S.N. Yakunin and N.N. Dremova, JETP Lett. (2008). doi:10.1134/S0021364008090099.

    Google Scholar 

  6. T. Aoki, Y. Chang, G. Badano, J. Zhao, C. Grein, S. Sivananthan, and D.J. Smith, J. Cryst. Growth. (2004). doi:10.1016/j.jcrysgro.2004.01.063.

    Google Scholar 

  7. A.S. Kashuba, E.V. Permikina, and I.A. Nikiphorov, Adv. Appl. Phys. 1, 510 (2013).

    Google Scholar 

  8. T. Aoki, D.J. Smith, Y. Chang, J. Zhao, G. Badano, C. Grein, and S. Sivananthan, Appl. Phys. Lett. (2003). doi:10.1063/1.1566462.

    Google Scholar 

  9. O. Vatel and M. Tanimoto, J. Appl. Phys. (1995). doi:10.1063/1.358758.

    Google Scholar 

  10. N.A. Torkhov and V.A. Novikov, Semiconductors (2009). doi:10.1134/S106378260908020X.

    Google Scholar 

  11. W. Melitz, J. Shena, A.C. Kummel, and S. Lee, Surf. Sci. Rep. (2011). doi:10.1016/j.surfrep.2010.10.001.

    Google Scholar 

  12. S.B. Kuntze, D. Ban, E.H. Sargent, St.J. Dixon-Warren, J.K. White, and K. Hinzer. Crit. Rev. Solid State Mater. Sci. (2007). doi:10.1080/10408430590952523.

    Google Scholar 

  13. H.O. Jacobs, P. Leuchtmann, O.J. Homan, and A. Stemmer, J. Appl. Phys. (1998). doi:10.1063/1.368181.

    Google Scholar 

Download references

Acknowledgements

This study was supported by The National Research Tomsk State University competitiveness improvement programme in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Novikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, V.A., Grigoryev, D.V., Bezrodnyy, D.A. et al. Electrical Properties of the V-Defects of Epitaxial HgCdTe. J. Electron. Mater. 46, 4435–4438 (2017). https://doi.org/10.1007/s11664-017-5393-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5393-0

Keywords

Navigation