Skip to main content
Log in

In-situ evaluation of the anodic oxide growth on Hg1−xCdxTe (MCT) using ellipsometry and second harmonic generation

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In-situ measurements of ellipsometry and second harmonic generation (SHG) were carried out to monitor the electrochemical growth of native anodic oxide films on Hg1−xCdxTe (MCT). Growth of the anodic oxide was performed using two different methods viz., by linear sweep voltammetry and by applying a constant current density. The influence of scan rate and the magnitude of the applied current density on the properties of the growing films were examined. From the ellipsometry data, we have shown that the measured refractive index value of 2.19 for the oxide film remains unchanged for moderate and high oxide growth rates. Only at very slow growth rates were significant increases in the refractive index observed (n=2.4), indicating an increase in the compactness of the layer. For film thicknesses in excess of ∼1200 Å, a non-zero value for the extinction coefficient was found, indicating the incorporation of HgTe particles within the anodic oxide film. SHG rotational anisotropy measurements, performed on the MCT with and without an anodic oxide film showed only the four-fold symmetry associated with the MCT and so confirmed that the oxide was centrosymmetric. However, an increase in the SH intensity was observed in the presence of the oxide and this has been attributed to multiple reflections in the thin oxide film and also to the increase in the χ(2) non-linear susceptibility tensor as a result of charge accumulation at the MCT/anodic oxide interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Nemirovsky and G. Bahir, J. Vac. Sci. Technol. A 7, 450 (1989).

    Article  CAS  Google Scholar 

  2. J.A. Wilson and V.A. Cotton, J. Vac. Sci. Technol. A 3, 199 (1985).

    Article  CAS  Google Scholar 

  3. N. Kajihara, G. Sudo, Y. Miyamoto, and K. Tanikawa, J. Electrochem. Soc. 135, 1252 (1988).

    Article  CAS  Google Scholar 

  4. Y. Nemirovsky and N. Amir, Narrow Gap II-VI Compounds for Optoelectronic and Electromagnetic Applications, ed. P. Capper (London: Chapman & Hall, 1997), p. 291.

    Google Scholar 

  5. P.C. Catagnus and C.T. Baker, U.S. patent 3,977,018 (1976).

  6. Y. Nemirovski, R. Adar, A. Korenfeld and I. Kidron, J. Vac. Sci. Technol. A 4, 1986 (1988).

    Article  Google Scholar 

  7. C. Wei, K.K. Mishra, and K. Rajeshwar, Chem. Mater. 4, 77 (1992).

    Article  CAS  Google Scholar 

  8. P.V.E. Elfick, L.E.A. Berlouis, S.M. Macdonald, S. Affrossman, P. Rocabois, and H. Tarry, J. Phys. Chem. 99, 15129 (1995).

    Article  CAS  Google Scholar 

  9. M.B. Reine, K.R. Maschhoff, S.P. Tobin, P.W. Norton, J.A. Mroczkowski, and E.E. Krueger, Semicond. Sci. Technol. 8, 788 (1993).

    Article  CAS  Google Scholar 

  10. J.R. Lowney, W.R. Thurber, and D.G. Seiler, Appl. Phys. Lett. 64, 3015 (1994).

    Article  CAS  Google Scholar 

  11. C.M. Stahle, C.R. Helms, H.F. Schaake, R.L. Strong, A. Simmons, J.B. Pallix, and C.H. Becker, J. Vac. Sci. Technol. A 7, 474 (1989).

    Article  CAS  Google Scholar 

  12. M. Sakashita, H.-H. Strehblow, and M. Bettini, J. Electrochem. Soc. 129, 1710 (1982).

    Article  CAS  Google Scholar 

  13. B.K. Janousek and R.C. Carscallen, J. Appl. Phys. 53, 1720 (1982).

    Article  CAS  Google Scholar 

  14. B.K. Janousek and R.C. Carscallen, J. Vac. Sci. Technol. 21, 442 (1982).

    Article  CAS  Google Scholar 

  15. R.L. Strong, J.M. Anthony, B.E. Gnade, J.A. Keenan, E. Norbeck, L.W. Li, and C.R. Helms. J. Vac. Sci. Technol. A 4, 1992 (1986).

    Article  CAS  Google Scholar 

  16. J.S. Ahearn, G.D. Davis, and N.E. Byer, J. Vac. Sci. Technol. 20, 756 (1982).

    Article  CAS  Google Scholar 

  17. M. Seelman-Eggebert (Ph.D. thesis, University of Tubingen, 1986).

  18. M. Seelman-Eggebert G. Brandt, and H.J. Richter, J. Vac. Sci. Technol. A 2, 11 (1984).

    Article  Google Scholar 

  19. U. Kaiser, O. Ganschow, L. Weidmann, and A. Berminghoven, J. Vac. Sci. Technol. A 1, 657 (1983).

    Article  CAS  Google Scholar 

  20. C.M. Stahle, D.J. Thomson, C.R. Helms C.H. Becker, and A. Simmons, Appl. Phys. Lett. 47, 521 (1989).

    Article  Google Scholar 

  21. Y. Nemirovsky and E. Finkman, J. Electrochem. Soc. 126, 768 (1979).

    Article  CAS  Google Scholar 

  22. R.B. Schoolar, B.K. Janousek, R.L. Alt, R.L. Carscallen, M.J. Daugherty, and A.A. Fote, J. Vac. Sci. Technol. 21, 164 (1982).

    Article  CAS  Google Scholar 

  23. H. Arwin, D.E. Aspnes, and D.R. Rhiger, J. Appl. Phys. 54, 7132 (1983).

    Article  CAS  Google Scholar 

  24. H. Arwin and D.E. Aspnes, J. Vac. Sci. Technol. A 2, 1316 (1984).

    Article  CAS  Google Scholar 

  25. D. Laser, J.A. Silberman, W.E. Spicer, and J.A. Wilson, J. Appl. Phys. 56, 1897 (1984).

    Article  CAS  Google Scholar 

  26. P.W. Kruse, Semicond. and Semimetals, ed. R.K. Williamson and A.K. Beer (New York: Academic, 1981).

    Google Scholar 

  27. F. Jackson, P.V.E. Elfick, L.E.A. Berlouis, P.F. Brevet, A.A. Tamburello-Luca, P. Hebert, and H.H. Girault, J. Chem. Soc. Faraday Trans. 92, 4061 (1996).

    Article  CAS  Google Scholar 

  28. A. Wark, L.E.A. Berlouis, F. Jackson, S. Lochran, F.R. Cruickshank, and P.F. Brevet, J. Electroanal. Chem. 435, 173 (1997).

    Article  CAS  Google Scholar 

  29. L.E.A. Berlouis, A. Wark, F. Cruickshank, R. Antoine, P. Galletto, P.F. Brevet, and H.H. Girault, Phys. Semicond. Dev., ed. V. Kumar and S.K. Agarwal (New Delhi, India: Narosa Publishing House, 1998), p. 705.

    Google Scholar 

  30. L.E.A. Berlouis, A. Wark, F.R. Cruickshank, R. Antoine, P. Galletto, P.F. Brevet, H.H. Girault, S.C. Gupta, F.R. Chavada, and A.K. Garg, J. Cryst. Growth 184/185, 691 (1998).

    Article  CAS  Google Scholar 

  31. L.E.A. Berlouis, A. Wark, F.R. Cruickshank, R. Antoine, P. Galletto, P.F. Brevet, H.H. Girault, S.C. Gupta, F.R. Chavada, S. Kumar, and A.K. Garg, Semicond. Sci. Technol. 13, 1117 (1998).

    Article  CAS  Google Scholar 

  32. L.E.A. Berlouis, A.W. Wark, F.R. Cruickshank, D. Pugh, and P.F. Brevet, J. Electron. Mater. 28, 830 (1999).

    Article  CAS  Google Scholar 

  33. Y.R. Shen, Principles of Nonlinear Optics (New York: John Wiley, 1984).

    Google Scholar 

  34. C. Yamada and T. Kimura, J. Cryst. Growth 130, 321 (1993).

    Article  CAS  Google Scholar 

  35. C. Yamada and T. Kimura, Phys. Rev. Lett. 70, 2344 (1993).

    Article  CAS  Google Scholar 

  36. A. Wark, L.E.A. Berlouis, F. Jackson, S. Lochran, F.R. Cruikshank, and P.F. Brevet, J. Electroanal. Chem. 435, 173 (1997).

    Article  CAS  Google Scholar 

  37. L.E.A. Berlouis, A. Wark, F.R. Cruickshank, R. Antoine, P. Galletto, P.F. Brevet, H.H. Girault, S.C. Gupta, F.R. Chavada, S. Kumar, and A.K. Garg, Semicond. Sci. Technol. 13, 1117 (1998).

    Article  CAS  Google Scholar 

  38. D.R. Rhiger, J. Electron. Mater. 22, 887 (1993).

    CAS  Google Scholar 

  39. J. Tunnicliffe, S.J.C. Irvine, O.D. Dosser, and J.B. Mullin, J. Cryst. Growth 68, 245 (1984).

    Article  CAS  Google Scholar 

  40. L.E.A. Berlouis, L.M. Peter, D.J. Schiffrin, M.G. Astles, and N.T. Gordon, U.K. patent GB 22,616,677 B (1996).

  41. P.M. Raccah, J.W. Garland, Z. Zhang, U. Lee, S. Ugur, S. Moc, S.K. Ghandi, and I. Bhat, J. Appl. Phys. 62, 4518 (1987).

    Article  Google Scholar 

  42. L.E.A. Berlouis, L.M. Peter, M.G. Astles, J. Gough, R.G. Humphreys, S.J.C. Irvine, and V. Steward, J. Appl. Phys. 62, 4518 (1987).

    Article  CAS  Google Scholar 

  43. R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (Amsterdam: North-Holland, 1979).

    Google Scholar 

  44. M.L. Lynch, B.J. Barner, and R.M. Corn, J. Electroanal. Chem. 300, 447 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wark, A.W., Berlouis, L.E.A., Cruickshank, F.K. et al. In-situ evaluation of the anodic oxide growth on Hg1−xCdxTe (MCT) using ellipsometry and second harmonic generation. J. Electron. Mater. 29, 648–653 (2000). https://doi.org/10.1007/s11664-000-0199-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0199-9

Key words

Navigation