Skip to main content
Log in

Pd/Sb(Zn) and Pd/Ge(Zn) ohmic contacts on p-type indium gallium arsenide: The employment of the solid phase regrowth principle to achieve optimum electrical and metallurgical properties

  • Special Issue Paper
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The development of two metallizations based on the solid-phase regrowth principle is presented, namely Pd/Sb(Zn) and Pd/Ge(Zn) on moderately doped In0.53Ga0.47As (p=4×1018 cm−3). Contact resistivities of 2–3×10−7 and 6–7×10−7 Ωcm2, respectively, have been achieved, where both systems exhibit an effective contact reaction depth of zero and a Zn diffusion depth below 50 nm. Exhibiting resistivities equivalent to the lowest values of Au-based systems in this doping range, especially Pd/Sb(Zn) contacts are superior to them concerning metallurgical stability and contact penetration. Both metallizations have been successfully applied for contacting the base layer of InP/In0.53Ga0.47As heterojunction bipolar transistors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jalali and S. J. Pearton, editors, InP HBTs: Growth, Processing, and Applications (Boston, MA: Artech House, 1995).

    Google Scholar 

  2. E.F. Chor, R.J. Malik, R.A. Hamm, and R. Ryan, IEEE Electron Dev. Lett. 17, 62 (1996).

    Article  CAS  Google Scholar 

  3. D. Caffin, C. Besombes, J.F. Bresse, P. Legay, G. Le Roux, G. Patriarche, and P. Launay, J. Vac. Sci. & Technol. B 15, 854 (1997).

    Article  CAS  Google Scholar 

  4. P.E. Hallali, P. Blanconnier, L. Bricard, and J.C. Renaud, J. de Phys. 49, 453 (1988).

    Google Scholar 

  5. P. Ressel, P.W. Leech, P. Veit, E. Nebauer, A. Klein, E. Kuphal, G.K. Reeves, and H.L. Hartnagel, J. Appl. Phys. 84, 861 (1998).

    Article  CAS  Google Scholar 

  6. U. Merkel, E. Nebauer, and M. Mai, Thin Solid Films 217, 108 (1992).

    Article  CAS  Google Scholar 

  7. T. Sands, E.D. Marshall, and L.C. Wang, J. Mater. Res., 3, 914 (1988).

    CAS  Google Scholar 

  8. T. Sands, Mater. Sci. & Eng. B 1, 289 (1989).

    Article  Google Scholar 

  9. L.C. Wang, J. Appl. Phys. 77, 1607 (1995).

    Article  CAS  Google Scholar 

  10. W.X. Chen, S.C. Hsueh, P.K.L. Yu, and S.S. Lau, IEEE Electron Dev. Lett. 7, 471 (1986).

    Google Scholar 

  11. W.L. Chen, J.C. Cowles, G.I. Haddad, G.O. Munns, K.W. Eisenbeiser, and J.R. East, J. Vac. Sci. & Technol. B 10, 2354 (1992).

    Article  CAS  Google Scholar 

  12. P. Ressel, H. Strusny, D. Fritzsche, H. Krautle, and K. Mause, MRS Symp. Proc. Ser. 318, 177 (1994).

    CAS  Google Scholar 

  13. L.C. Wang, M.H. Park, F. Deng, A. Clawson, S.S. Lau, D.M. Hwang, and C.J. Palmstrom, Appl. Phys. Lett. 66, 3310 (1995).

    Article  CAS  Google Scholar 

  14. M.H. Park, L.C. Wang, J.Y. Cheng, and C.J. Palmstrom, Appl. Phys. Lett. 70, 99 (1997).

    Article  CAS  Google Scholar 

  15. P. Ressel, M.H. Park, L.C. Wang, and E. Kuphal, Electron. Lett. 32, 1734 (1996).

    Article  CAS  Google Scholar 

  16. P. Ressel, H. Strusny, M. Trapp, H. Kräutle, and D. Fritzsche, Appl. Phys. Lett. 65, 1174 (1994).

    Article  CAS  Google Scholar 

  17. H.H. Berger, Solid-State Electron. 15, 145 (1972).

    Article  Google Scholar 

  18. P. Ressel, H. Strusny, K. Vogel, J. Würfl, D. Fritzsche, H. Kräutle, E. Kuphal, K. Mause, M. Trapp, and U. Richter, J. Vac. Sci. & Technol. B 13, 2297 (1995).

    Article  CAS  Google Scholar 

  19. C.J. Palmstrom, S.A. Schwarz, E. Yablonovitch, J.P. Harbison, C.L. Schwartz, L. Florez, T.J. Gmitter, L.C. Wang, and S.S. Lau, J. Appl. Phys. 67, 334 (1990).

    Article  Google Scholar 

  20. P. Ressel, W. Österle, I. Urban, I. Dörfel, A. Klein, K. Vogel, and H. Kräutle, J. Appl. Phys. 80, 3910 (1996).

    Article  CAS  Google Scholar 

  21. S.A. Schwarz, C.J. Palmstrom, R. Bhat, M. Koza, L.C. Wang, and M.H. Park, MRS Symp. Proc. 354, 471 (1995).

    CAS  Google Scholar 

  22. W. Österle and P. Ressel, Mater. Sci. & Eng. B 40, 42 (1996).

    Article  Google Scholar 

  23. M.H. Park, P.H. Hao, and L.C. Wang, J. Electron. Mater. 26, 25 (1997).

    Article  Google Scholar 

  24. P. Ressel, K. Vogel, D. Fritzsche, and K. Mause, Electron. Lett. 28, 2237 (1992).

    Article  CAS  Google Scholar 

  25. M. Arens, P. Kurpas, P. Ressel, and M. Weyers, Thin Solid Films 313, 609 (1998).

    Article  Google Scholar 

  26. G. Pitz (thesis, TH Darmstadt, Germany, 1991).

    Google Scholar 

  27. T. Sands, V.G. Keramidas, R. Gronsky, and J. Washburn, Thin Solid Films 136, 105 (1986).

    Article  CAS  Google Scholar 

  28. P. Bhattacharya editor, Properties of Lattice-Matched and Strained Indium Gallium Arsenide, emis Datareviews Ser. No. 8 (London: IEE, 1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ressel, P., Hao, P.H., Park, M.H. et al. Pd/Sb(Zn) and Pd/Ge(Zn) ohmic contacts on p-type indium gallium arsenide: The employment of the solid phase regrowth principle to achieve optimum electrical and metallurgical properties. J. Electron. Mater. 29, 964–972 (2000). https://doi.org/10.1007/s11664-000-0189-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-000-0189-y

Key words

Navigation