Skip to main content
Log in

A thermally coupled flow formulation with microstructural evolution for hypoeutectic cast-iron solidification

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A thermally coupled incompressible flow formulation, including microstructural phase-change effects, is presented. The governing equations are written in the framework of the finite-element method using a generalized streamline operator technique. In particular, a hypoeutectic cast-iron microstructural model accounting for primary austenite and eutectic solidification is considered. An inverse lever rule has been employed to describe the austenite formation, while the eutectic (graphite and cementite) fractions are assumed to be governed by nucleation and growth laws. The application of this methodology in the area of casting solidification constitutes an original contribution of this work. Further, an enhanced staggered scheme is also proposed in order to solve the resulting strongly coupled discretized equations. The analysis of a solidification problem, with particular interest in the influence of the natural convection on the microstructural formation, is performed. The numerical results obtained with the present formulation allow prediction of the flow patterns, volume-fraction distributions, and recalescences developed during the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. McDaniel and N. Zabaras: Int. J. Num. Methods Eng., 1994, vol. 37, pp. 2755–77.

    Article  Google Scholar 

  2. J. Dantzig: Int. J. Num. Methods Eng., 1989, vol. 28, pp. 1769–85.

    Article  Google Scholar 

  3. A. Brent, V. Voller, and K. Reid: Num. Heat Transfer, 1988, vol. 13, pp. 297–318.

    Google Scholar 

  4. C. Swaminathan and V. Voller: Int. J. Num. Methods Heat Fluid Flow, 1993, vol. 3, pp. 233–44.

    CAS  Google Scholar 

  5. C. Beckermann and R. Viskanta: Int. J. Heat Mass Transfer, 1988, vol. 31 (1), pp. 35–46.

    Article  CAS  Google Scholar 

  6. W. Bennon and F. Incropera: Int. J. Heat Mass Transfer, 1987, vol. 30 (10), pp. 2161–70.

    Article  CAS  Google Scholar 

  7. V. Voller, A. Brent, and C. Prakash: Int. J. Heat Mass Transfer, 1989, vol. 32 (9), pp. 1719–31.

    Article  CAS  Google Scholar 

  8. M. Krane, F. Incropera, and D. Gaskell: Int. J. Heat Mass Transfer, 1997, vol. 40 (16), pp. 3827–35.

    Article  CAS  Google Scholar 

  9. M. Krane and F. Incropera: Int. J. Heat Mass Transfer, 1997, vol. 40 (16), pp. 3837–47.

    Article  CAS  Google Scholar 

  10. M. Krane and F. Incropera: J. Heat Transfer, 1997, vol. 119, pp. 783–91.

    CAS  Google Scholar 

  11. J. Heinrich, S. Felicelli, and D. Poirier: Computer Methods Appl. Mech. Eng., 1991, vol. 189, pp. 435–61.

    Article  Google Scholar 

  12. S. Felicelli, J. Heinrich, and D. Poirier: Metall. Trans. B, 1991, vol. 22B, pp. 847–59.

    CAS  Google Scholar 

  13. M. Schneider and C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2373–88.

    CAS  Google Scholar 

  14. S. Chang and D. Stefanescu: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 2708–21.

    CAS  Google Scholar 

  15. A. Reddy and C. Beckermann: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 479–89.

    CAS  Google Scholar 

  16. C. Wang and C. Beckermann: Metall. Trans. A, 1993, vol. 24A, pp. 2787–2802.

    CAS  Google Scholar 

  17. P. Thevoz, J. Desbiolles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20A, pp. 311–22.

    CAS  Google Scholar 

  18. R. Krivanek and C. Mobley: AFS Trans., 1984, vol. 85, pp. 311–17.

    Google Scholar 

  19. D. Stefanescu and C. Kanetkar: AFS Trans., 1987, vol. 68, pp. 139–44.

    Google Scholar 

  20. D. Stefanescu, G. Upadhya, and D. Bandyopadhyay: Metall. Trans. A, 1990, vol. 21A, pp. 997–1005.

    CAS  Google Scholar 

  21. E. Fras, W. Kapturkiewicz, and H. Lopez: AFS Trans. 1992, vol. 48, pp. 583–91.

    Google Scholar 

  22. G. Upadhya and A. Paul: AFS Trans., 1992, vol. 118, pp. 925–33.

    Google Scholar 

  23. E. Fras and H. Lopez: AFS Trans., 1993, vol. 132, pp. 355–63.

    Google Scholar 

  24. D. Goettsch and J. Dantzig: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1063–79.

    CAS  Google Scholar 

  25. E. Perez, D. Celentano, and E. Onate: [(in Spanish).] Proc. 3rd Congr. on Numerical Methods in Engineering, Zaragoza, Spain, 1996, pp. 769–78.

    Google Scholar 

  26. M. Cruchaga and E. Onate: Comp. Methods Appl. Mech. Eng., 1997, vol. 143, pp. 49–67.

    Article  Google Scholar 

  27. D. Celentano, E. Onate, and S. Oller: Int. J. Num. Methods Eng., 1994, vol. 37, pp. 3441–65.

    Article  Google Scholar 

  28. D. Celentano and E. Perez: Int. J. Num. Methods Heat Fluid Flow, 1996, vol. 6 (8), pp. 71–79.

    CAS  Google Scholar 

  29. D. Celentano: Comm. Num. Meth. Eng., 1998, vol. 14, pp. 719–730.

    Article  Google Scholar 

  30. M. Cruchaga and D. Celentano: Proc. 10th Int. Conf. on Numerical Methods in Thermal Problems, Swansea, United Kingdom, 1997.

  31. O. Zienkiewicz and R. Taylor: The Finite Element Method, 4th ed., McGraw-Hill Book Company, New York, NY, 1989.

    Google Scholar 

  32. D. Celentano, D. Gunasegaram, and T. Nguyen: Int. J. Solids Struct., 1999, vol. 36, pp. 2341–2378.

    Article  Google Scholar 

  33. R. Heine, C. Loper, and P. Rosenthal: Principles of Metal Casting, 2nd ed., McGraw-Hill Book Company, New York, NY, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celentano, D., Cruchaga, M. A thermally coupled flow formulation with microstructural evolution for hypoeutectic cast-iron solidification. Metall Mater Trans B 30, 731–744 (1999). https://doi.org/10.1007/s11663-999-0035-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-999-0035-4

Keywords

Navigation