Skip to main content
Log in

The ion-association-interaction approach as applied to aqueous H2SO4-Al2(SO4)3-MgSO4 solutions at 250 °C

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A hybrid ion-association-interaction approach is implemented to describe the chemistry and thermodynamics of aqueous H2SO4-Al2(SO4)3-MgSO4 solutions at 250 °C. These solutions are relevant to the sulfuric acid pressure leaching of nickeliferous laterites. Strong complexes in solution are handled via the ion-association approach. Nonidealities, including weak ion pair formations, are treated through the Pitzer ion-interaction theory. The existing complexes in solution and the Pitzer ion-interaction parameters were identified through processing solubility data in the binary (H2SO4-Al2(SO4)3 and H2SO4-MgSO4) as well as the ternary (H2SO4-Al2(SO4)3-MgSO4) electrolyte solutions at or near 250 °C. The existing aqueous aluminum-bearing species identified were Al3+, Al(SO4)+, and Al2(SO4) 03 , with Al2(SO4) 03 as the dominant species at moderate to high H2SO4 concentrations. The existing aqueous magnesium-bearing species found were Mg2+ and MgSO 04 , with Mg2+ being dominant except at low concentrations of H2SO4. The dominant species identified for Al and Mg explain why a higher H2SO4 concentration in solution is required during the processing of high-magnesium laterites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Krause, A. Singhal, B.C. Blakey, V.G. Papangelakis, and D. Georgiou: in Hydrometallurgy and Refining of Nickel and Cobalt, Proc. Nickel-Cobalt 97 Int. Symp. W.C. Cooper and I. Mihaylov, eds., Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Quebec, Canada, 1997, vol. 1, pp. 441–58.

    Google Scholar 

  2. E.C. Chou, P.B. Queneau, and R.S. Rickard: Metall. Trans. B, 1977, vol. 8B, pp. 547–54.

    CAS  Google Scholar 

  3. D. Georgiou and V.G. Papangelakis: Hydrometallurgy, 1998, vol. 49, pp. 23–46.

    Article  CAS  Google Scholar 

  4. E.T. Carlson and C.S. Simons: in Extractive Metallurgy of Copper, Nickel, and Cobalt, P. Queneau, ed., Interscience Publishers, New York, NY, 1960, pp. 363–97.

    Google Scholar 

  5. M.E. Chalkley and I.L. Toirac: in Hydrometallurgy and Refining of Nickel and Cobalt, Proc. Nickel-Cobalt 97 Int. W.C. Cooper and I. Mihaylov, eds., Canadian Institue of Mining, Metallurgy and Petroleum, Montreal, Quebec, Canada, 1997, vol. I, pp. 341–54.

    Google Scholar 

  6. P.B. Queneau, R.E. Doane, M.W. Cooperrider, M.H. Berggren, and P. Rey: Metall. Trans. B, 1984, vol. 15B, pp. 433–40.

    CAS  Google Scholar 

  7. M. Baghalha and V.G. Papangelakis: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 945–52.

    CAS  Google Scholar 

  8. K.S. Johnson and R.M. Pytkowicz: in Activity Coefficients in Electrolyte Solutions, R.M. Pytkowicz, ed., CRC Press, Boca Raton, FL, 1979, vol. II, pp. 1–62.

    Google Scholar 

  9. Y. Awakura, K. Koyama, Y. Takegawa, and H. Majima: Metall. Trans. B, 1990, vol. 21B, pp. 689–95.

    CAS  Google Scholar 

  10. R.A. Robinson and R.H. Stokes: Electrolyte Solutions, 2nd ed., Butterworth, and Co., London, 1965, pp. 174–222.

    Google Scholar 

  11. C.B. Monk: Electrolytic Dissociation, Academic Press, London, 1961, pp. 130–256.

    Google Scholar 

  12. K.S. Pitzer: in Activity Coefficients in Electrolyte Solutions, K.S. Pitzer, ed., CRC Press, Boca Raton, FL, 1991, pp. 75–153.

    Google Scholar 

  13. K.S. Pitzer. J. Phys. Chem., 1973, vol. 77, pp. 268–77.

    Article  CAS  Google Scholar 

  14. K.S. Pitzer and G. Mayorga: J. Solution Chem., 1974, vol. 3, pp. 539–46.

    Article  CAS  Google Scholar 

  15. K.S. Pitzer, R.N. Roy, and L.F. Silvester: J. Am. Chem. Soc., 1977, vol. 99, pp. 4930–36.

    Article  CAS  Google Scholar 

  16. C.E. Harvie, N. Moller, and J.H. Weare: Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 723–51.

    Article  CAS  Google Scholar 

  17. N. Moller: Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 821–37.

    Article  CAS  Google Scholar 

  18. C.F. Baes and R.E. Mesmer: The Hydrolysis of Cations, Wiley, New York, NY, 1976, pp. 9–71.

    Google Scholar 

  19. R.E. Mesmer, D.A. Palmer, and J.M. Simonson: in Activity Coefficients in Electrolyte Solutions, K.S. Pitzer, ed., CRC Press, Boca Raton, FL, 1991, p. 491.

    Google Scholar 

  20. W.L. Marshall and R. Slusher: J. Chem. Eng. Data, 1965, vol. 10 (4), pp. 353–58.

    Article  CAS  Google Scholar 

  21. V.J. Zatka: “The Alkalimetric Determination of Free Acid in Leach Liquors,” JRGRL Report, INCO Ltd., Toronto, February 17, 1975.

    Google Scholar 

  22. A.I. Vogel and J. Bassett: Vogel’s Textbook of Quantitative Chemical Analysis, Longman, London, 1989, pp. 490–93.

    Google Scholar 

  23. C. Nikolic: Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 1971, pp. 36–40.

    Google Scholar 

  24. B.C. Blakey: Master’s Thesis, University of Toronto, Toronto, 1994, pp. 30–75.

    Google Scholar 

  25. H.S. Harned and B.B. Owen: The Physical Chemistry of Electrolytic Solutions, 3rd ed., Reinhold, New York, NY, 1958, pp. 515–18.

    Google Scholar 

  26. M.H. Lietzke, R.W. Stoughton, and T.F. Young: J. Phys. Chem., 1961, vol. 65, pp. 2247–49.

    CAS  Google Scholar 

  27. W.L. Marshall and E.V. Jones: J. Phys. Chem., 1966, vol. 70, pp. 4028–40.

    Article  CAS  Google Scholar 

  28. A.G. Dickson, D.J. Wesolowski, D.A. Palmer, and R.E. Mesmer: J. Phys. Chem., 1990, vol. 94, pp. 7978–85.

    Article  CAS  Google Scholar 

  29. H.F. Holmes and R.E. Mesmer: J. Chem. Thermodyn., 1992, vol. 24, pp. 317–28.

    Article  CAS  Google Scholar 

  30. J.L. Oscarson, R.M. Izatt, P.R. Brown, Z. Pawlak, S.E. Gillespie, and J.J. Christensen: J. Solution Chem., 1988, vol. 17, pp. 841–63.

    Article  CAS  Google Scholar 

  31. B.C. Blakey and V.G. Papangelakis: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 555–66.

    Article  CAS  Google Scholar 

  32. S. Kotrly and L. Sucha: Handbook of Chemical Equilibria in Analytical Chemistry, Wiley, New York, NY, 1985, pp. 109–29.

    Google Scholar 

  33. R.M. Smith and A.E. Martell: Critical Stability Constants, Plenum, New York, NY, 1982, vol. 5, pp. 410–14.

    Google Scholar 

  34. W.L. Marshall: J. Phys. Chem., 1967, vol. 71, pp. 3584–88.

    Article  CAS  Google Scholar 

  35. W.L. Marshall: J. Inorg. Nucl. Chem., 1975, vol. 37, pp. 2155–63.

    Article  CAS  Google Scholar 

  36. W.L. Marshall and R. Slusher: J. Inorg. Nucl. Chem., 1975, vol. 37, pp. 2165–70.

    Article  CAS  Google Scholar 

  37. D.G. Archer and R.H. Wood: J. Solution Chem., 1985, vol. 14, pp. 757–80.

    Article  CAS  Google Scholar 

  38. R.C. Phutela and K.S. Pitzer: J. Phys. Chem., 1986, vol. 90, pp. 895–901.

    Article  CAS  Google Scholar 

  39. R.C. Phutela and K.S. Pitzer: J. Chem. Eng. Data, 1986, vol. 31, pp. 320–27.

    Article  CAS  Google Scholar 

  40. S.L. Clegg, J.A. Rard, and K.S. Pitzer: J. Chem. Soc. Faraday Trans., 1994, vol. 90, pp. 1875–94.

    Article  CAS  Google Scholar 

  41. W.L. Marshall and R. Slusher: J. Inorg. Nucl. Chem., 1975, vol. 37, pp. 2171–76.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baghalha, M., Papangelakis, 1.G. The ion-association-interaction approach as applied to aqueous H2SO4-Al2(SO4)3-MgSO4 solutions at 250 °C. Metall Mater Trans B 29, 1021–1030 (1998). https://doi.org/10.1007/s11663-998-0070-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0070-6

Keywords

Navigation