Skip to main content
Log in

The acid-base behavior of zinc sulfate electrolytes: The temperature effect

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The pH of both synthetic zinc sulfate solutions of various compositions and commercial zinc plant electrolytes was measured over a range of temperatures. A model for the solution thermodynamics has been developed to predict the solution speciation, temperature, and concentration effects on the pH. It was found from both the thermodynamic predictions and the pH measurements that the pH of zinc sulfate electrolytes, in the absence of free acid, drops with increasing temperature. The pH-temperature behavior was largely dominated by zinc hydrolysis. The pH of zinc sulfate electrolytes with small amounts of free acid both increased and then decreased in the temperature range of interest. This was explained by taking into account the additional effects of bisulfate/sulfate equilibrium and/or ZnSO4 ion pairing on the overall pH behavior. Based on the correlation between the model and pH measurements, it is evident that the dinuclear species Zn2(OH)3+ exists at a much higher concentration than Zn(OH)+ ions and dominates the pH-temperature behavior of the solution. Speciation and the acid/base composition of a ZnSO4 solution, against pH at 100 °C, were also predicted. The pH-temperature behavior of zinc plant electrolytes from Kidd creek (Falconbridge Limited, Timmins, Canada) and CEZinc (Noranda Limited, Valleyfield, Canada) was measured by saturating the electrolytes with ZnO at 100 °C and then allowing the solutions to cool. The pH first increased slightly and then dropped from a maximum pH of 4.2. By including species involving Al3+, Mg2+, Mn2+, and Na+ in the zinc plant electrolytes in the solution model calculation, model predictions of the pH-temperature were again correlated with the pH-temperature measurements on zinc plant electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charles F. Baes and Robert E. Mesmer: The Hydrolysis of Cations, Wiley-Interscience, New York, NY, 1976, pp. 287–95.

    Google Scholar 

  2. L. Rosato: Noranda Limited, Valleyfield, Canada, private communication. June 1996.

  3. J.L. Oscarson, R.M. Izatt, P.R. Brown, Z. Pawlak, S.E. Gillespie, and J.J. Christensen: J. Solution Chem, 1988, vol. 17, pp. 841–63.

    Article  CAS  Google Scholar 

  4. Peeter Kruus, A. Catherine Hayes, and William A. Adams: J. Solution Chem., 1984, vol. 13, pp. 61–75.

    Article  Google Scholar 

  5. Harold C. Helgeson: J. Phys. Chem., 71, (1967) 3121–36.

    Article  CAS  Google Scholar 

  6. Andrew G. Dickson, David J. Wesolowski, Donald A. Palmer, and Robert E. Mesmer: J. Phys. Chem., 94, 1990 7978–85.

    Article  CAS  Google Scholar 

  7. W.L. Marsall and E.V. Jones: J. Phys. Chem., 70, (1966) 4028–40.

    Article  Google Scholar 

  8. C.F. Baes: J. Am. Chem. Soc., 86, (1964) 5611–16.

    Article  Google Scholar 

  9. K.S. Pitzer, R.N. Roy, and L.F. Silvester: J. Am. Chem. Soc. 99, (1977) 4930–36.

    Article  CAS  Google Scholar 

  10. Dimitrios Filippou, George Demopoulos, and Vladimiros G. Papangelakis: AICHE J., 41, (1995) 171–84.

    Article  CAS  Google Scholar 

  11. A. Catherine Hayes, Peeter Kruus, and William A. Adams: J. Solution Chem., 13, (1984) 61–75.

    Article  CAS  Google Scholar 

  12. Wlodzimierz Libus, Teresa Sadowska, and Zofia Libus: J. Solution Chem., 9, (1980) 341–54.

    Article  CAS  Google Scholar 

  13. John G. Albright and Donald G. Miller: J. Solution Chem., 4, (1975) 809–16.

    Article  CAS  Google Scholar 

  14. Shunzo Katayama: J. Solution Chem., 5, (1976) 241–47.

    Article  CAS  Google Scholar 

  15. R.M. Izatt, D. Eatough, J.J. Christensen, and C.H. Bartholomew: J. Chem. Soc., 1969, pp. A47–53.

  16. Reino Nasanen: Acta Chem A. Scand., 1949, pp. 179–89.

  17. R.W. Freeman and L.L. Tavlarides: J. Inorg. Nucl. Chem., 43 (1981) 2467–69.

    Article  CAS  Google Scholar 

  18. S.F. Patil, A.V. Borhade, and M. Nath: Appl. Radiat. Isot., 45, (1994) 1–3.

    Article  CAS  Google Scholar 

  19. G. Schorsch: Bull. Soc. Chim., 1964, pp. 1449–61 (in French).

  20. G. Schorsch: Bull. Soc. Chim., (1965) 988–95 (in French).

  21. D.D. Perrin: Chem. Soc., (1962) 4500–02.

  22. K.A. Burkov, L.A. Garmash, and L.S. Lilich: Rus. J. Inorg. Chem. Soc., 23, (1978) 1770–73.

    Google Scholar 

  23. I.L. Khodakovskiy and A.Ye. Yelkin: Geokhimiya., 1976, No. 13, pp. 127–33.

  24. N.B. Milic and R.M. Jelic: J. Chem. Soc. Dalton Trans., (1995) 3597–3600.

  25. R.A. Reichle, K.G. Mccurdy, and L.G. Hepler: Can. J. Chem., 53 (1975) 3841–45.

    Article  CAS  Google Scholar 

  26. D.M. Larsen and P.B. Linkson: Metall. Trans. B, 23B, (1993) 409–17.

    Google Scholar 

  27. S.E. Ziemniak: J. Solution Chem., 21, (1992) 745–60.

    Article  CAS  Google Scholar 

  28. S.E. Ziemniak, M.E. Jones, and K.E.S. Combs: J. Solution Chem., 21, (1992) 1153–76.

    Article  CAS  Google Scholar 

  29. Cecil M. Criss and J.W. Cobble: J. Am. Chem. Soc., 86, (1964) 5385–89.

    Article  CAS  Google Scholar 

  30. Cecil M. Criss and J.W. Cobble: J. Am. Chem. Soc., 86, (1964) 5390–93.

    Article  CAS  Google Scholar 

  31. Cecil M. Criss and J.W. Cobble: Am. Chem. Soc., 86, (1964) 5394–5401.

    Article  Google Scholar 

  32. J.W. Cobble: Chem. Phys., 21, (1953) 1446–50.

    Article  CAS  Google Scholar 

  33. R.G. Bates, B.R. Staples, and R.A. Robinson: Anal. Chem., 42, (1970) 867–71.

    Article  CAS  Google Scholar 

  34. H.P. Meissner: in Thermodynamics of Aqueous System with Industrial Application, S.A. Newman, ed., American Chemical Society, Series 133, Washington, D.C., 1980.

  35. R.E. Mesmer and H.F. ed., Holmes: J. Solution Chem., 21, (1992) 725–44.

  36. F.H. Fisher: J. Solution Chem., 7, (1978) 897–901.

    Article  CAS  Google Scholar 

  37. Kaushik Das: J. Solution Chem., 17, (1988) 327–36.

    Article  CAS  Google Scholar 

  38. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Baley, K.L. Churney, and R.L. Nuttall: J. Phys. Chem. Ref. Data., 1982, vol. 11, suppl. 2, pp. 2–21.

    Google Scholar 

  39. N.M. Nikolaeva: Russ. J. Inorg. Chem. Soc., 14, (1969) 487–89.

    Google Scholar 

  40. William E. Price and Hermann Weingartner: J. Phys. Chem., 1991, vol. 95, pp. 8933–38.

    Article  CAS  Google Scholar 

  41. J.L. Oscarson, R.M. Izatt, P.R. Brown, Z. Pawlak, S.E. Gillespie, and J.J. Christensen: J. Solution Chem., 1988, vol. 17, pp. 841–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Breisinger, D.B. The acid-base behavior of zinc sulfate electrolytes: The temperature effect. Metall Mater Trans B 29, 1157–1166 (1998). https://doi.org/10.1007/s11663-998-0037-7

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-998-0037-7

Keywords

Navigation