Skip to main content
Log in

Copper losses and thermodynamic considerations in copper smelting

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A relationship between copper in slag and copper in matte during copper sulfide smelting has been derived using industrial data from 42 plants employing blast furnaces, reverberatory furnaces, flash furnaces, and Mitsubishi smelting furnaces together with the available thermodynamic equilibrium data for Cu-Fe-S-O, FeO-SiO2, and Cu-Fe-S systems and laboratory slag-matte equilibrium information. A copper smelting diagram showing oxygen potential; sulfur potential; and copper, magnetite, and sulfur contents in slag during the smelting of different grades of copper mattes is developed for mattes containing less than 70 pct copper. The data presented can be used to determine the entrained copper losses in slag. Further, by combining the calculated value of the entrained matte with the corresponding plant data for the sulfur content of the slag, it is possible to derive the dissolved sulfur content of the slag. These calculated values were in excellent agreement with the experimentally determined sulfide capacity of fayalite slags. It is shown that there is no need to assume the presence of dissolved copper sulfide species in industrial slags. The existing equilibrium data that relate the copper content of slags to oxygen potential adequately describe the copper losses in industrial slags.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Biswas and W.G. Davenport: Extractive Metallurgy of Copper, Pergamon Press, Elmsford, NY, 2nd ed., 1980, and 3rd ed., 1994.

    Google Scholar 

  2. T.N. Antonioni, C.M. Diaz, H.C. Garven, and C.A. Landolt: in Copper Smelting—An Update, D.B. George and J. C. Taylor, eds., TMS-AIME, Warrendale, PA, 1982, pp. 17–31.

    Google Scholar 

  3. P. Bryk, J. Ryselin, J. Honkalsalo, and R. Malstrom: J. Met., 1958, vol. 10, pp. 395–400.

    CAS  Google Scholar 

  4. N.J. Themelis, G.C. Mckerrow, P. Tarassoff, and G.D. Hallett: J. Met., 24, 1972, pp. 25–32.

    CAS  Google Scholar 

  5. T. Nagano and T. Suzuki: in Extractive Metallurgy of Copper, J.C. Yannopoulous and J.C. Agarwal, eds., AIME, New York, NY, 1976, vol. 1, pp. 439–57.

    Google Scholar 

  6. I.S. Blair, J. Humphriss, B.P. Joyce, and J.L. Wamock: pp. 168–96.

  7. M. Goto: in Extractive Metallurgy of Copper, pp. 154–67.

  8. Inco Staff: in Extractive Metallurgy of Copper, pp. 218–33.

  9. L.R. Verney: Trans Inst. Min. Metall., 1969, vol. 78, C28–42.

    CAS  Google Scholar 

  10. I.L. Barker, J.S. Jacobi, and B.H. Wadia: J. Met., 8, 1957, pp 774–80.

    Google Scholar 

  11. B. Claus and A. Guebel: in Pyrometallurgical Processes in Nonferrous Metallurgy, J.N. Anderson and P.E. Queneau, eds., AIME, New York, NY, 1967, pp. 93–114.

    Google Scholar 

  12. L.R. Verney and P.J. Hansen: in Pyrometallurgical Processes in Nonferrous Metallurgy, 1967, pp. 133–72.

  13. W.G. Davenport and E.H. Partelpoeg: Flash Smelting, Pergamon Press, Elmsford, NY, 1987, pp. 459.

    Google Scholar 

  14. G.J. Brittingham: Trans. Inst. Min. Metall., 75, 1966, C65-C73.

    CAS  Google Scholar 

  15. C.J. Newman, G. Macfarlane, K. Molnar, and A.G. Storey: Pyrometallurgy of Copper, Pergamon Press, Elmsford, NY, 1991, pp. 65–80.

    Google Scholar 

  16. H.S. Ray, R. Sridhar, and K.P. Abraham: Extraction of Nonferrous Metals, Affiliated East-West Press, New Delhi, India, 1994.

    Google Scholar 

  17. C. Diaz and C.A. Landolt: Minerales, 1986, vol. 41.

  18. A.V. Vanyukov, V. Ya.Zaitsev, V.S. Kurzina, and S.S. Tihonov: Tsvet. Met., 1964, Jan. pp. 21–27.

  19. R. Shimpo, S. Goto, O. Ogawa, and I. Asakura: Can. Metall. Q., 1986, vol. 25, pp. 113–21.

    CAS  Google Scholar 

  20. H. Jalkanen: Scand J. Metall., 10, 1981, pp. 177–84.

    CAS  Google Scholar 

  21. M. Nagamori: Metall. Trans., 1974, vol. 5, pp. 531–38.

    Google Scholar 

  22. F.J. Tavera and W.G. Davenport: Metall. Trans. B 10B, 1979, pp. 237–41.

    CAS  Google Scholar 

  23. A. Geveci and T. Rosenquist: Trans. Inst. Min. Metall., 82, 1973, pp. C193.

    Google Scholar 

  24. J.M. Toguri and N.H. Santander: Can. Metall. Q., 8, 1969, pp. 167–71.

    CAS  Google Scholar 

  25. M. Ruddle, B. Taylor, and A. Bates: Trans. Inst. Min. Metall., 75, 1966, C1-C12.

    CAS  Google Scholar 

  26. J.R. Taylor and J.H.E. Jeffes: Trans. Inst. Min. Metall., 85, 1975, pp C18-C24.

    Google Scholar 

  27. A. Yazawa and M. Kameda: Tech. Rep. Tohoku Univ., 19, 1955, p. 251.

    Google Scholar 

  28. A. Yazawa, S. Nakazawa, and Y. Takeda: Advances in Sulfide Smelting, TMS-AIME, Warrendale, PA, 1983, vol. 1, pp. 99–117.

    Google Scholar 

  29. D.R. Gaskell, J. Palacios, and C. Sainsiri: Proc. Elliott Symp., 1990, pp. 161–72.

  30. D.L. Kaiser and J.F. Elliott: Metall. Trans., IIB, 17B, 1986, pp. 147–57.

    CAS  Google Scholar 

  31. C.W. Bale and J.M. Toguri: Can. Metall. Q., 15, 1976, pp. 305–18.

    CAS  Google Scholar 

  32. E.J. Michal and R. Schuhmann: Trans. AIME, 194, 1952, pp. 724–28.

    Google Scholar 

  33. S.R. Simeonov, R. Sridhar, and J.M. Toguri: Metall. Mater. Trans. IIB, 26B, 1995, pp. 325–34.

    CAS  Google Scholar 

  34. S.R. Simeonov, R. Sridhar, and J.M. Toguri: Proc. Symp. on Recent Developments in Non-Ferrous Pyrometallurgy, CIM, Montreal, 1994, paper no. 49.3.

    Google Scholar 

  35. M. Nagamori: J. Met., 1994, vol. 46, pp. 65–70.

    CAS  Google Scholar 

  36. M.C. Bell, J.A. Blanco, H. Davies, and R. Sridhar, J. Met., 1978, vol. 30 (10), pp. 4–14.

    Google Scholar 

  37. G. Victrovitch; “Precipitation of Copper on Cooling of Iron Silicate Slags,” paper presented at CIM Conf. of Metallurgists and Int. Symp. on Metallurgical Slags, Nova Scotia, Aug. 24–28, 1980.

  38. A. Yazawa: Can. Metall. Q., 13, 1974, pp. 443–53.

    CAS  Google Scholar 

  39. R. Altman and H.H. Kellogg: Trans. Inst. Min. Metall., 81 1972, C163-C175.

    Google Scholar 

  40. F. Sehnalek and I. Imris: Advances in Extractive Metallurgy and Refining, London, IMM, 1972, pp. 39–62.

    Google Scholar 

  41. M.D. Coulter and C.R. Fountain: Non-Ferrous Smelting Symp., Aus IMM, Port Pirie, South Australia, 1989, pp. 237–40.

    Google Scholar 

  42. T. Shibata, Y. Abe, and M. Uekawa: Proc. Copper 91, vol. 4, Pyrometallurgy of Copper, C. Diaz, C. Landolt, A. Luraschi and C.J. Newman, eds., Pergamon Press, Elmsford, NY, 1991, pp. 125–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sridhar, R., Toguri, J.M. & Simeonov, S. Copper losses and thermodynamic considerations in copper smelting. Metall Mater Trans B 28, 191–200 (1997). https://doi.org/10.1007/s11663-997-0084-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-997-0084-5

Keywords

Navigation