Skip to main content
Log in

Data Analysis and Prediction Model for Copper Matte Smelting Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

During copper matte smelting, a lag exists in the analysis of the smelting results, leading to the production parameters not being effectively adjusted in time. As the first smelting process in copper pyrometallurgy, the optimization of the amount of raw material, as well as the prediction and adjustment of slag and matte phases, has become an extremely important step. To address this issue, this study analyzed copper smelting parameters, such as the copper content in the slag, matte grade, slag ratio, and Fe/SiO2 ratio. The Bayesian optimization support vector regression (BO-SVR) model was used to predict the copper content in the slag and matte grade by combining plant production data with machine learning. The data features of the relevant copper smelting parameters were extracted using the BO-SVR model, and the data were fitted to obtain the interaction relationship functions between the variables. The relationships between several variables in the copper smelting process were interpreted in combination with a theoretical analysis and applied in practice. The results showed that the model’s prediction of melting results resolves the issues of lagging and adjustment of the smelting process. The model can provide insights for the analysis and adjustment of critical parameters in the smelting process and promote the development of intelligent analysis and control of copper matte smelting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. K.J.J. Kuipers, L.F.C.M. van Oers, M. Verboon, and E. van der Voet: Glob. Environ. Change, 2018, vol. 49, pp. 106–05.

    Article  Google Scholar 

  2. P. Cheng, P. Garcia-Herreros, M. Lalpuria, and I.E. Grossmann: Comput. Chem. Eng., 2020, vol. 140, p. 106919.

    Article  CAS  Google Scholar 

  3. Q. Liu, M. Liu, H. Zhou, F. Yan, Y. Ma, and W. Shen: J. Manuf. Syst., 2022, vol. 64, pp. 149–69.

    Article  Google Scholar 

  4. N. Dučić, A. Jovičić, S. Manasijević, R. Radiša, Ž Ćojbašić, and B. Savković: Appl. Sci., 2020, vol. 10, pp. 6048–62.

    Article  Google Scholar 

  5. Z. Wang, Z. Feng, Z. Ma, and J. Peng: Processes, 2023, vol. 12, pp. 32–59.

    Article  Google Scholar 

  6. X. Chen, J. Dai, and Y. Luo: Processes, 2022, vol. 10, pp. 1972–87.

    Article  CAS  Google Scholar 

  7. A. Anderson, V. Kumar, V.M. Rao, and J. Grogan: JOM, 2022, vol. 74, pp. 1543–67.

    Article  Google Scholar 

  8. Y. Xiao, J. Wang, T. Lu, F. Liu, C. Lv, and H. Zhao: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 756–64.

    Article  Google Scholar 

  9. P. Taskinen and K. Avarmaa: Sustainability, 2021, vol. 13, pp. 12826–38.

    Article  CAS  Google Scholar 

  10. Q. Wang, X. Guo, Q. Tian, L. Liao, and Y. Zhang: Chin. J. Nonferrous Met., 2015, vol. 25, pp. 1678–86.

    CAS  Google Scholar 

  11. B. Xie, H. Xiao, L. Chen, W. Liu, D. Zhang, and T. Yang: Min. Metall. Explor., 2020, vol. 38, pp. 233–41.

    Google Scholar 

  12. Y. Xie, J. Liu, D. Xu, W. Gui, and C. Yang: Control Eng. Pract., 2016, vol. 46, pp. 66–76.

    Article  Google Scholar 

  13. L. Zhao, D. Zhu, D. Liu, H. Wang, Z. Xiong, and L. Jiang: Appl. Sci., 2023, vol. 13, pp. 4246–57.

    Article  CAS  Google Scholar 

  14. J. Liu, W. Gui, Y. Xie, and C. Yang: Appl. Math. Model., 2014, vol. 38, pp. 2206–13.

    Article  Google Scholar 

  15. W. Gui, L. Wang, C. Yang, Y. Xie, and X. Peng: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 1075–81.

    Article  CAS  Google Scholar 

  16. K.F. Andriani, J. Mucelini, and J.L.F. Da Silva: Fuel, 2020, vol. 275, p. 117790.

    Article  CAS  Google Scholar 

  17. P. de B. Harrington: J. Chemom., 2017, vol. 31, pp. 2867–80.

    Article  Google Scholar 

  18. H.U. Cho, Y. Nam, E.J. Choi, Y.J. Choi, H. Kim, S. Bae, and J.W. Moon: J. Build. Eng., 2021, vol. 44, p. 103411.

    Article  Google Scholar 

  19. G.N. Kouziokas: Appl. Soft Comput., 2020, vol. 93, p. 106410.

    Article  Google Scholar 

  20. Z. Guo, Y.S. Ong, T. He, and H. Liu: IEEE Trans. Cybern., 2022, vol. 52, pp. 9820–33.

    Article  PubMed  Google Scholar 

  21. A.M. Elsayad, A.M. Nassef, and M. Al-Dhaifallah: Biomed. Signal Process. Control, 2022, vol. 71, p. 103223.

    Article  Google Scholar 

  22. S. Nabi, H. Nassif, J. Hong, H. Mamani, and G. Imbens: Manag. Sci., 2022, vol. 68, pp. 1737–55.

    Article  Google Scholar 

  23. K. Li, R. Ma, Y. Qin, N. Gong, J. Wu, P. Wen, S. Tan, D.Z. Zhang, L.E. Murr, and J. Luo: J. Mater. Process. Technol., 2023, vol. 318, p. 118032.

    Article  Google Scholar 

  24. B. Zhao and J. Liao: Metals, 2022, vol. 12, pp. 190–206.

    Article  CAS  Google Scholar 

  25. J.P.T. Kapusta: JOM, 2017, vol. 69, pp. 970–79.

    Article  CAS  Google Scholar 

  26. Q. Wang, S. Wang, M. Tian, D. Tang, Q. Tian, and X. Guo: Int. J. Min. Metall. Mater., 2019, vol. 26, pp. 301–08.

    Article  CAS  Google Scholar 

  27. L. Shui, Z. Cui, X. Ma, M. Akbar Rhamdhani, A. Nguyen, and B. Zhao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1218–25.

    Article  Google Scholar 

  28. S. Zhou, Y. Wei, B. Li, and H. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3086–96.

    Article  Google Scholar 

  29. H. Zhang, B. Li, Y. Wei, H. Wang, and Y. Yang: J. Market. Res., 2022, vol. 18, pp. 4604–16.

    CAS  Google Scholar 

  30. S. Wang, Q. Wang, X. Guo, Q. Tian, S. Qu, Z. Wang, and M. Huang: Trans. Nonferrous Met. Soc. China, 2022, vol. 32, pp. 4113–28.

    Article  CAS  Google Scholar 

  31. C. Deng: Shanxi Metall., 2018, vol. 173, pp. 115–16.

    Google Scholar 

  32. H. Zhang, B. Li, Y. Wei, H. Wang, and Y. Yang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1538–51.

    Article  Google Scholar 

  33. W. Xiao, S. Yao, S. Zhou, Y. Wei, B. Li, and H. Wang: J. Alloys Compd., 2022, vol. 903, p. 163751.

    Article  CAS  Google Scholar 

  34. B. Zhang, W. Xiao, Y. Yang, S. Zhou, Y. Wei, B. Li, and H. Wang: Metall. Mater. Trans. B, 2023, vol. 55B, pp. 495–511.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Yunnan Province’s “Xingdian Talent Support Plan” for young talents (KKRD202252076), National Natural Science Foundation of China (51974142).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Zhou.

Ethics declarations

Conflict of interest

Guangbiao Wang, Yingbao Yang, Shiwei Zhou, Bo Li, Yonggang Wei, and Hua Wang declare that they have no conflict of interest or financial conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Yang, Y., Zhou, S. et al. Data Analysis and Prediction Model for Copper Matte Smelting Process. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03115-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03115-0

Navigation