Skip to main content

Advertisement

Log in

Evaluation of the compressive strength and Cl content of the blast furnace slag-soda sludge-based cementitious material using machine-learning approaches

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Solid waste-based cementitious material is friendly to the environment. The machine-learning technique brings the advantage of high efficiency to the study of physical properties of cementitious materials. In this study, the activation mechanism of soda sludge (SS) on blast furnace slag (BFS) was investigated using X-ray diffraction and thermal gravimetric; the compressive strength and Cl of the BFS-SS-based cementitious material was evaluated using back propagation (BP) neural network model and nine other machine-learning models (Tree, Bagged Trees, Boosted Trees, Linear Support Vector Machine, Quadric Support Vector Machine, Cubic Support Vector Machine, Gaussian Support Vector Machine, Linear Regression, and Gaussian Process Regression). The potential correlation between the compressive strength and Cl was investigated using Python 3.6. Results show that the hydraulicity phase of the BFS-SS-based cementitious material was CaAl2Si2O8·4H2O, 3CaO·Al2O3·CaCl2·10H2O, and 3CaO·Al2O3·3CaSO4·32H2O; when the BFS to SS was 40:60, the compressive strength and the solidification ratio of the Cl were the highest with 4.04 MPa and 5.36% at 2 days and 10.47 MPa and 22.58% at 30 days. The BP neural network model with LM training algorithm is the lowest on mean squared error for the compressive strength and Cl, with 0.0013 and 0.0061 at 2 days and 0.0794 and 0.4794 at 30 days, which has a best predictive ability comparing to the other machine-learning approaches motioned in this study. Pearson correlation coefficient was 0.9749, indicating that the compressive strength and the solidification ratio of the Cl is a positive and extremely strong correlation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Wang.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Q. Evaluation of the compressive strength and Cl content of the blast furnace slag-soda sludge-based cementitious material using machine-learning approaches. Clean Techn Environ Policy 24, 983–1000 (2022). https://doi.org/10.1007/s10098-021-02239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-021-02239-0

Keywords

Navigation