Skip to main content
Log in

Immersion Depth Optimization of Single Nozzle During Beam Blank Continuous Casting Based on Multiphysics Characteristics

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Longitudinal surface cracks are prevalent in the continuous casting of hypo-peritectic beam blanks, primarily related to multiphysics non-uniformity (multi-phase field, flow field, temperature field) within the mold. Therefore, multi-phase and coupled flow-thermal models were constructed to investigate the non-uniform multiphysics characteristics in the beam blank mold with a single nozzle and its effect on the formation of longitudinal cracks. First, the three-phase flow model reveals significant unevenness slag distribution along the web width, positively correlated to surface velocity of the molten steel. Subsequently, considering the impact of the solidification shell, surface velocity decreases nonlinearly with increasing immersion depth, influenced by web vortex position in the X-direction, which is also influenced by mold curvature, and interaction between web and side vortexes. Furthermore, the temperature field distribution inside the mold is non-uniform. Under the effect of the single-web recirculation flow, the temperature near the meniscus at the NN (position near the nozzle) side of the web is lower than that at the FN (position far away from the nozzle) side, resulting in more intensive initial cooling at this position. Meanwhile, a reheating zone exists at the mold exit of the NN side. Statistical analysis revealed that the absolute values of Spearman coefficient between the non-uniformity of shell thickness and the temperature and flow velocity of the molten steel exceed 0.6, which is related to the depth of the web vortex. Finally, from the perspective of the influence of SEN’s immersion depth on multiphysics, the high surface velocity of the steel, strong cooling near the meniscus, and non-uniform shell thickness at the mold exit can be relieved with an immersion depth of 75 mm. The plant experiment confirmed that increasing the immersion depth from 65 to 75 mm leads to a relative reduction of 39 and 43 pct in the longitudinal cracks ratio for strands and rolled products, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. J.E. Lee, J.K. Yoon, and H.N. Han: Isij Int., 1998, vol. 38, pp. 132–41.

    Article  CAS  Google Scholar 

  2. H. Cui, J. Zhang, J. Liu, W. Su, J. Yan, and F. Wang: Ironmak. Steelmak., 2021, vol. 48, pp. 116–25.

    Article  CAS  Google Scholar 

  3. Y.J. Seok and J.K. Yoon: Met. Mater. Int., 2002, vol. 8, pp. 543–50.

    Article  CAS  Google Scholar 

  4. J. Madias, C. Genzano, M. Oropeza, and C. Moss: Iron Steel Technol., 2018, vol. 15, pp. 130–38.

    Google Scholar 

  5. G. Yang, L. Zhu, W. Chen, X. Yu, and G. Guo: Ironmak. Steelmak., 2019, vol. 46, pp. 809–18.

    Article  CAS  Google Scholar 

  6. Y. He, Q. Wang, B. Hu, L. Zhu, W. Chen, and S. He: Ironmak. Steelmak., 2016, vol. 43, pp. 588–93.

    Article  CAS  Google Scholar 

  7. S. Du, Y. Bao, and J. Wang: Iron Steel, 2009, vol., pp. 29–34.

  8. M. Xu and M. Zhu: Isij Int., 2015, vol. 55, pp. 791–98.

    Article  CAS  Google Scholar 

  9. J.J.M. Peixoto, W.V. Gabriel, L.Q. Ribeiro, C.A.D. Silva, I.A.D. Silva, and V. Seshadri: J. Mater. Process. Technol., 2016, vol. 233, pp. 89–99.

    Article  Google Scholar 

  10. W.V. Gabriel, J.J. Mol Peixoto, G.S. Queiroz, C.A. Da Silva, I.A. Da Silva, V. Seshadri: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2596–2611.

  11. S. Li, Y. Peng, P. Li, W. Ning, J. Du, C. Fu: Continuous Casting, 2021, vol., pp. 9–16.

  12. W. Wang, W. Su, J. Liu, J. Yan, H. Cui, and F. Wang: Ironmak. Steelmak., 2020, vol. 47, pp. 929–41.

    Article  CAS  Google Scholar 

  13. J. Zhang, C. Deng, Z. Shan, Y. Zhang, L. Zhao: Continuous Casting, 2010, vol., pp. 23–27.

  14. H. Lu, C. Cheng, Y. Li, X. Qin, and Y. Jin: J. Iron. Steel Res. Int., 2019, vol. 26, pp. 926–40.

    Article  CAS  Google Scholar 

  15. X. Huang, B.G. Thomas, and F.M. Najjar: Metall. Mater. Trans. B, 1992, vol. 23B, pp. 339–56.

    Article  CAS  Google Scholar 

  16. T. Zhang, J. Yang, G. Xu, H. Liu, J. Zhou, and W. Qin: Int. J. Miner. Metall., 2021, vol. 28, pp. 238–48.

    Article  CAS  Google Scholar 

  17. P. Xu, Y. Zhou, D. Chen, M. Long, and H. Duan: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 44–52.

    Article  Google Scholar 

  18. G. Du, J. Li, and Z. Wang: Isij Int., 2018, vol. 58, pp. 78–87.

    Article  CAS  Google Scholar 

  19. W. Chen, Y.Z. Zhang, L.G. Zhu, C.J. Zhang, Y. Chen, B.X. Wang, and C. Wang: Ironmak. Steelmak., 2012, vol. 39, pp. 551–59.

    Article  CAS  Google Scholar 

  20. B.G. Thomas and L. Zhang: Isij Int., 2001, vol. 41, pp. 1181–93.

    Article  CAS  Google Scholar 

  21. Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 707–25.

    Article  CAS  Google Scholar 

  22. D. Guo, Z. Hou, K. Guo, F. Zhang, Z. Zeng, and G. Wen: Iron Steel, 2023, vol. 58, pp. 78–90.

    CAS  Google Scholar 

  23. B. Zhao, B.G. Thomas, S.P. Vanka, and R.J.O. Malley: Metall. Mater. Trans. B, 2005, vol. 36B, pp. 801–23.

    Article  CAS  Google Scholar 

  24. Z. Liu, B. Li, A. Vakhrushev, M. Wu, and A. Ludwig: Steel Res. Int., 2019, vol. 90, p. 1800117.

    Article  Google Scholar 

  25. J. Ji, Y. Cui, X. Zhang, Q. Wang, S. He, and Q. Wang: Steel Res. Int., 2021, vol. 92, p. 2100101.

    Article  CAS  Google Scholar 

  26. Z. Wei, X. Wang, and M. Yao: Metall. Mater. Trans. B, 2023, vol., pp. 1–16.

  27. M. Bielnicki, J. Jowsa, and A. Cwudziński: Arch. Metall. Mater., 2015, vol. 60, pp.

  28. S. Cho, B.G. Thomas, and S. Kim: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 52–76.

    Article  Google Scholar 

  29. X. Li, B. Li, Z. Liu, D. Wang, T. Qu, S. Hu, C. Wang, and R. Gao: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3246–64.

    Article  Google Scholar 

  30. B.G. Thomas, X. Huang, and R.C. Sussman: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 527–47.

    Article  CAS  Google Scholar 

  31. G. Wen, and P. Tang: Device and method for testing the thickness of mold liquid slag based on wettability. CN202110407214.0[P]. 2024-01-14.

  32. Y. Tian, H. Zhou, G. Wang, L. Xu, S. Qiu, and R. Zhu: Materials, 2023, vol. 16, p. 5665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D. Qiu, Z. Zhang, X. Li, M. Lv, X. Mi, and X. Xi: Metals, 2023, vol. 13, p. 964.

    Article  CAS  Google Scholar 

  34. M.M. Wolf: Strand surface quality and the peritectic reaction-a look into the basics, Steelmaking Conference Proceedings, 1998, pp. 53–62.

  35. T. Matsumiya, T. Saeki, J. Tanaka, and T. Ariyoshi: Tetsu-to-Hagané, 1982, vol. 68, pp. 1782–91.

    Article  Google Scholar 

  36. C. Spearman: Am. J. Psychol., 1904, vol. 15, p. 88.

    Google Scholar 

  37. J.K. Brimacombe, F. Weinberg, and E.B. Hawbolt: Metall. Mater. Trans. B, 1979, vol. 10B, pp. 279–92.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the support from National Natural Science Foundation of China (52274318).

Conflict of interest

The authors declare no conflict of interest in publishing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zibing Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Z., Hou, Z., Tang, P. et al. Immersion Depth Optimization of Single Nozzle During Beam Blank Continuous Casting Based on Multiphysics Characteristics. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03080-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03080-8

Navigation