Skip to main content
Log in

Oxidation Weight Gain Model for Electrodes During Electroslag Remelting of Superalloy Inconel 718

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

High-temperature terminal oxidation is the primary reason for slag component loss from electroslag remelting. The objective of this exploration is to make an oxidation weight increment model that can be utilized to appraise the weight gain of consumable cathodes and decide the deoxidation interaction for Inconel 718 composite. The oxidation condition and state of the oxidized Inconel 718 compound surface were inspected and noticed utilizing XRD and SEM, and the weight increment was measured to infer the Inconel 718 amalgam oxidation dynamic bend. A numerical model for the steady oxidation of oneself consuming anode during electroslag remelting was built utilizing a consistent temperature oxidation motor model and a variable-temperature oxidation active model for Inconel 718 composite. The model made in this work can appropriately gauge the oxidation augmentation of oneself consuming terminal all through the electroslag remelting interaction, and afterward conclude the specific measure of deoxidizer required, which is basic for the modern assembling of this high-virtue alloy grade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.J. McMahon and L.F. Coffin: Metall. Trans. B, 1970, vol. 1, pp. 3443–50

    Article  CAS  Google Scholar 

  2. Q.H. Zhang, Y.J. Chang, G. Gu, and Y.S. Luo: Scripta Mater., 2017, vol. 1, pp. 55–57

    Article  Google Scholar 

  3. N. Esmaeili and O.A. Ojo: Metall. Mater. Trans. B, 2018, vol. 49, pp. 912–18

    Article  CAS  Google Scholar 

  4. M. Montakhab and E. Balikci: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3330–42

    Article  CAS  Google Scholar 

  5. H. Sugimura, Y. Kaneno, and T. Takasugi: Mater. Trans., 2011, vol. 52, pp. 663–71

    Article  CAS  Google Scholar 

  6. S.S. Li, W.M. Li, and Y.L. Sun: Metall. Mater. Trans. B, 2022, vol. 53, pp. 1112–21

    Article  CAS  Google Scholar 

  7. X.C. Wang: Special Steel, 2018, vol. 5, pp. 84–88

    Google Scholar 

  8. S.C. Duan, X. Shi, and M.C. Zhang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 353–64

    Article  CAS  Google Scholar 

  9. X. Huang, B. Liu, and Z. Liu: Metall. Mater. Trans. B, 2018, vol. 49, pp. 709–22

    Article  CAS  Google Scholar 

  10. C.B. Shi, Y. Huang, and J.X. Zhang: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 18–23

    Article  CAS  Google Scholar 

  11. C.S. Wang and S.G. Liu: Special Steel, 1997, vol. 18, pp. 31–35

    Google Scholar 

  12. G.A. Greene and C.C. Finfrock: Oxid. Met., 2001, vol. 55, pp. 505–21

    Article  CAS  Google Scholar 

  13. X.H. Wang and Y.C. Zhou: Corros. Sci., 2003, vol. 45, pp. 891–907

    Article  CAS  Google Scholar 

  14. V.A.C. Haanappel, W. Glatz, and H. Clemens: Mater. High Temp., 1997, vol. 14, pp. 19–25

    Article  CAS  Google Scholar 

  15. S. Huang and B.J. Zhang: J. Iron Steel. Res., 2016, vol. 28, pp. 55–60

    CAS  Google Scholar 

  16. J. Yu, Z.H. Jiang, and F.B. Liu: ISIJ Int., 2017, vol. 57, pp. 1205–212

    Article  CAS  Google Scholar 

  17. F. Wang, Q. Wang, and J. Baleta: ISIJ Int., 2019, vol. 71, pp. 4198–4205

    Google Scholar 

  18. F. Wang, J.P. Tan, and Z.Q. Liu: J. Mater Res. Technol., 2023, vol. 25, pp. 1696–1708

    Article  CAS  Google Scholar 

  19. F.L. Bin, X.Y. Hao, and H.L. Bing: J. Iron. Steel Res. Int., 2023, vol. 30, pp. 1258–267

    Article  Google Scholar 

  20. F. Wang, Q. Wang, and J. Baleta: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2285–297

    Article  CAS  Google Scholar 

  21. K.V.S. Srinadh and V. Singh: Bull. Mater. Sci., 2004, vol. 2, pp. 347–54

    Article  Google Scholar 

  22. T. Ujihara, K. Fujiwara, and G. Sazaki: J. Cryst. Growth, 2002, vol. 241, pp. 387–94

    Article  CAS  Google Scholar 

  23. S.H. Kim, C. Kim, and J.H. Cha: Oxid. Met., 2019, vol. 92, pp. 505–23

    Article  CAS  Google Scholar 

  24. J.D. Cao and J.S. Zhang: Mater Charact, 2016, vol. 118, pp. 122–28

    Article  CAS  Google Scholar 

  25. B.H. Yu, Y.P. Li, Y. Nie, and H. Mei: J. Alloys Compd., 2018, vol. 756, pp. 1148–57

    Article  Google Scholar 

  26. S.S. Parker, J. White, P. Hosemann, and A. Nelson: JOM, 2018, vol. 70, pp. 186–91

    Article  CAS  Google Scholar 

  27. Y. Liu and G.Q. Li: Mater. High Temp., 2019, vol. 36, pp. 212–19

    Article  CAS  Google Scholar 

  28. B. Huang, X.C. Tang, and Y.P. Chen: J. Alloys Compd., 2017, vol. 704, pp. 443–52

    Article  CAS  Google Scholar 

  29. L. Teng, D. Nakatomi, and S. Seetharaman: Metall. Mater. Trans. B, 2007, vol. 38, pp. 477–84

    Article  Google Scholar 

  30. D. Saber, I.S. Emam, and R. Adel-Karim: J. Alloys Compd., 2017, vol. 719, pp. 133–41

    Article  CAS  Google Scholar 

  31. T. Takahashi and Y. Minamino: Mater. Trans., 2014, vol. 55, pp. 290–97

    Article  CAS  Google Scholar 

  32. J. Yu, F. Liu, and H. Li: JOM, 2019, vol. 71, pp. 744–53

    Article  Google Scholar 

  33. B.C. Cai, P.Y. Liu, and Y. Tao: Mater. Eng., 2000, vol. 8, pp. 34–36. (In Chinese)

    Google Scholar 

  34. Q.L. Wei, Y.X. Wang, and Z. Chen: Rare Metal. Mat. Eng., 2006, vol. 6, pp. 35–43

    Google Scholar 

  35. Y.R. Duan, L. Bk, and X.C. Huang: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 1582–90

    Article  CAS  Google Scholar 

  36. L. Zhang, T. Wen, and W. Chen: Metall. Mater. Trans. B, 2021, vol. 52, pp. 4033–45

    Article  CAS  Google Scholar 

  37. Q. Wang, H. Cai, and L. Pan: JOM, 2016, vol. 68, pp. 3143–49

    Article  CAS  Google Scholar 

  38. Y. Cao, G. Li, and Z. Jiang: JOM, 2020, vol. 72, pp. 3826–35

    Article  Google Scholar 

  39. Y. Li, Y. Tan, and X.G. You: Corros. Sci., 2023, vol. 211, 110904

    Article  CAS  Google Scholar 

  40. X.Y. Sun and L.F. Zhang: Mater. Today Commun., 2022, vol. 32, 103893

    Article  CAS  Google Scholar 

  41. B. Rahul: Mane Haribabu Ampolu Corros. Sci., 2019, vol. 151, pp. 81–86

    Article  Google Scholar 

  42. E. Dong, W. Yu, and Q. Cai: Oxid. Met., 2017, vol. 88, pp. 719–32

    Article  CAS  Google Scholar 

  43. G.M. Cao and W.C. Shan: Iron Steel, 2022, vol. 57, pp. 132–42. (In Chinese)

    Google Scholar 

Download references

Acknowledgments

This research was funded by the National Natural Science Foundation of China [Approval Nos: 52174317, 52374338].

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, X., Xie, X. & Li, W. Oxidation Weight Gain Model for Electrodes During Electroslag Remelting of Superalloy Inconel 718. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03070-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03070-w

Navigation