Skip to main content
Log in

Wettability and Interfacial Phenomena Between Silicon and Sulfur-Bearing Steels and Solid CaO Substrates

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The wettability between a Si–S steel with 0.2 wt pct sulfur and 0~3.5 wt pct silicon and a CaO substrate was investigated using a sessile drop method at 1550 °C. The equilibrium contact angle between the Si–S steel and the CaO substrate was 95, 136, 142 and 142 deg when the content of silicon in the steel was 0, 1.4, 2.8, and 3.5 wt pct, respectively. When there was no silicon in the steel, the steel hardly reacted with the CaO substrate. However, when the steel contained > 1 wt pct silicon, a reaction layer composed of CaS and 2CaO·SiO2 was generated at the interface between the molten steel and the substrate. Besides, the thickness of the reaction layer increased from 0 to 36 μm with the silicon content in the steel increasing from 0 to 2.8 wt pct, because the dissolved oxygen was reduced by silicon. However, when the silicon content increased to 3.5 wt pct, the thickness of the reaction layer reversely decreased, which was attributed to the prevention of the sulfur diffusion in the dense solid state reaction layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y. Taniguchi and S. Seetharaman: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 587–97.

    Article  Google Scholar 

  2. K. Michalek, L. Čamek, K. Gryc, M. Tkadlečková, T. Huczala, and V. Troszok: Mater. Technol., 2012, vol. 46(3), pp. 297–303.

    CAS  Google Scholar 

  3. S.-C. Duan, X. Shi, M.-C. Zhang, B. Li, W.-S. Yang, F. Wang, H.-J. Guo, and J. Guo: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 353–64.

    Article  Google Scholar 

  4. M. Numata and Y. Higuchi: ISIJ Int., 2012, vol. 52, pp. 2019–25.

    Article  CAS  Google Scholar 

  5. J. Yang, M. Kuwabara, T. Sakai, N. Uchida, Z. Liu, and M. Sano: ISIJ Int., 2007, vol. 47, pp. 418–26.

    Article  CAS  Google Scholar 

  6. R. Tsujino, J. Nakashima, M. Hirai, and Y. Yamada: ISIJ Int., 1989, vol. 29, pp. 92–95.

    Article  CAS  Google Scholar 

  7. Y. Taniguchi, N. Sano, and S. Seetharaman: ISIJ Int., 2009, vol. 49, pp. 156–63.

    Article  CAS  Google Scholar 

  8. G.H. Park, Y.B. Kang, and J.H. Park: ISIJ Int., 2011, vol. 51, pp. 1375–82.

    Article  Google Scholar 

  9. X. Hao, X. Wang, and W. Wang: Steel Res. Int., 2015, vol. 86, pp. 1455–60.

    Article  CAS  Google Scholar 

  10. Q. Shu, Q. Luo, L. Wang, and K. Chou: Steel Res. Int., 2015, vol. 86, pp. 391–99.

    Article  CAS  Google Scholar 

  11. Q. Wen, F. Shen, H. Zheng, J. Yu, X. Jiang, and Q. Gao: ISIJ Int., 2018, vol. 58, pp. 792–98.

    Article  CAS  Google Scholar 

  12. H.-Y. Wang, Y. Hou, G.-H. Zhang, and K.-C. Chou: ISIJ Int., 2020, vol. 60, pp. 636–39.

    Article  CAS  Google Scholar 

  13. T. Tanaka, T. Ogiso, M. Ueda, and J. Lee: ISIJ Int., 2010, vol. 50, pp. 1071–77.

    Article  CAS  Google Scholar 

  14. J.H. Park: Steel Res. Int., 2013, vol. 84, pp. 664–69.

    Article  CAS  Google Scholar 

  15. S. Kobayashi: ISIJ Int., 1999, vol. 39, pp. 664–70.

    Article  CAS  Google Scholar 

  16. H.-S. Kim, H.-G. Lee, and K.-S. Oh: ISIJ Int., 2002, vol. 42, pp. 1404–11.

    Article  CAS  Google Scholar 

  17. H.L. Yang, J.S. Ye, X.L. Wu, Y.S. Peng, Y. Fang, and X.B. Zhao: ISIJ Int., 2016, vol. 56, pp. 108–15.

    Article  CAS  Google Scholar 

  18. D.-H. Woo, K. Youn-Bae, and H.-G. Lee: Metall. Mater. Trans. B, 2002, vol. 33B, p. 915.

    Article  CAS  Google Scholar 

  19. D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1095–1104.

    Article  Google Scholar 

  20. D. Roy, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1086–94.

    Article  Google Scholar 

  21. J. Xu, F. Huang, X. Wang, and C. Jing: Steel Res. Int., 2016, vol. 87, pp. 1694–1701.

    Article  CAS  Google Scholar 

  22. X. Jianfei, H. Fuxiang, W. Xinhua, and J. Cailiang: Iron Steel, 2016, vol. 52, pp. 45–51.

    Google Scholar 

  23. K. Takahashi, K. Utagawa, H. Shibata, S.-Y. Kitamura, N. Kikuchi, and Y. Kishimoto: ISIJ Int., 2012, vol. 52, pp. 10–17.

    Article  CAS  Google Scholar 

  24. L. Fei, Z. Changdong, and M. Jianehao: Shanghai Met., 2014, vol. 36, pp. 20–26.

    Google Scholar 

  25. S. Lee and D.J. Min: Met. Mater. Int., 2019, vol. 25, pp. 248–56.

    Article  CAS  Google Scholar 

  26. J. Zhao, H. Zhu, L. Wang, M. Song, J. Li, and Z. Xue: Ironmak. Steelmak., 2022, vol. 49, pp. 302–310.

    Article  CAS  Google Scholar 

  27. L. Cheng, L. Zhang, Y. Ren, and J. Zhang: J. Alloys Compd., 2020, vol. 845, pp. 2–10.

    Google Scholar 

  28. L. Cheng, Y. Ren, T. Liu, and L. Zhang: Steel Res. Int., 2022, vol. 93, p. 2100703.

    Article  CAS  Google Scholar 

  29. L. Zhang, L. Cheng, Y. Ren, and J. Zhang: Ceram. Int., 2020, vol. 46, pp. 15674–85.

    Article  CAS  Google Scholar 

  30. J. Lee and K. Morita: ISIJ Int., 2004, vol. 44, pp. 235–42.

    Article  CAS  Google Scholar 

  31. T. Yoshikawa, K. Motosugi, T. Tanaka, and M. Ueda: Tetsu-to-Hagané, 2011, vol. 97, pp. 361–68.

    Article  CAS  Google Scholar 

  32. P. Shen, L. Zhang, J. Fu, H. Zhou, Y. Wang, and L. Cheng: Ceram. Int., 2019, vol. 45, pp. 11287–95.

    Article  CAS  Google Scholar 

  33. M. Humenik Jr. and W.D. Kingery: J. Am. Ceram. Soc., 1954, vol. 37, pp. 18–23.

    Article  CAS  Google Scholar 

  34. E.P. Heikkinen, T. Kokkonen, R. Mattila, and T. Fabritius: Steel Res. Int., 2010, vol. 81, pp. 1070–77.

    Article  CAS  Google Scholar 

  35. S. Ozawa, K. Morohoshi, and T. Hibiya: ISIJ Int., 2014, vol. 54, pp. 2097–2103.

    Article  CAS  Google Scholar 

  36. R. Brooks and P. Quested: J. Mater. Sci., 2005, vol. 40, pp. 2233–38.

    Article  CAS  Google Scholar 

  37. Y. Su, Z. Li, and K.C. Mills: J. Mater. Sci., 2005, vol. 40, pp. 2201–05.

    Article  CAS  Google Scholar 

  38. K. Nakashima and K. Mori: ISIJ Int., 1992, vol. 32, pp. 11–18.

    Article  CAS  Google Scholar 

  39. M. Hino and K. Ito: Thermodynamic Data for Steelmaking, Tohoku University Press, Sendai, 2009.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Key R&D Program (No. 2023YFB3709900), the National Natural Science Foundation China (Grant No. U22A20171), the Hebei Natural Science Foundation (Grant No. E2021203062), and the High Steel Center (HSC) at Yanshan University, Hebei Innovation Center of the Development and Application of High Quality Steel Materials, Hebei International Research Center of Advanced and Intelligent Manufacturing of High Quality Steel Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Ren or Lifeng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Ma, T., Ren, Q. et al. Wettability and Interfacial Phenomena Between Silicon and Sulfur-Bearing Steels and Solid CaO Substrates. Metall Mater Trans B 55, 1830–1842 (2024). https://doi.org/10.1007/s11663-024-03069-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03069-3

Navigation