Skip to main content
Log in

Preparation of Tungsten Carbide Powder by In Situ Electrolysis Utilizing Self-Consuming Graphite Anode

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, graphite was used as a self-consuming anode to synthesize WC nanopowders in situ in a molten salt containing Na2WO4 with Na2CO3. The effects of electrolysis voltage, W/C molar ratio, electrolysis temperature and time on the physical phase composition and morphology of the products were discussed. The intrinsic relationship between the carbon content in the molten salt during electrolysis and the electrolysis efficiency was revealed. The results show that WC powders with a particle size of about 100 nm can be prepared at a temperature of 800 °C and an electrolysis voltage of 3.5 V with a W/C molar ratio of 10:1. The carbon content in the molten salt increases and then decreases with time in the electrolytic process and the current efficiencies show a corresponding correlation. STEM results demonstrate that a single WC grain size can be up to 20 nm, which starts from a nucleation point on the carbon surface and grows along the initial grain spread. Cyclic voltammetry indicated that WO42− and CO32− were co-reduced and deposited to form the WC phase instantaneously. An analysis of the chronocurrent curves shows that the WC grains grow at the cathode in a transient nucleation mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. C. Nath, M. Rahman, and K.S. Neo: Int. J. Mach. Tools Manuf., 2009, vol. 49, pp. 1089–95.

    Article  Google Scholar 

  2. R. Onler, E. Korkmaz, K. Kate, R.E. Chinn, S.V. Atre, and O.B. Ozdoganlar: J. Mater. Process. Technol., 2019, vol. 267, pp. 268–79.

    Article  CAS  Google Scholar 

  3. M.N. Azman, N.J. Abualroos, K.A. Yaacob, and R. Zainon: Radiat. Phys. Chem., 2023, vol. 202, 110492.

    Article  CAS  Google Scholar 

  4. Y. Yan, J. Lin, T. Liu, B. Wang, L. Qiao, J. Tu, J. Cao, and J. Qi: Corros. Sci., 2022, vol. 200, 110231.

    Article  CAS  Google Scholar 

  5. T. Kokulnathan, T.J. Wang, F. Ahmed, and T. Alshahrani: Chem. Eng. J., 2023, vol. 451, 138884.

    Article  CAS  Google Scholar 

  6. L. Zhang, G. Liu, G.B. Yang, S. Chen, B.Y. Huang, and C.F. Zhang: Int. J. Refract. Met. H, 2007, vol. 25, pp. 166–70.

    Article  Google Scholar 

  7. M.S. El-Eskandarany, A.A. Mahday, H.A. Ahmed, and A.H. Amer: J. Alloys Compd., 2000, vol. 312, pp. 315–25.

    Article  CAS  Google Scholar 

  8. Z. Xiong, G. Shao, X. Shi, X. Duan, and L. Yan: Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 242–50.

    Article  CAS  Google Scholar 

  9. K.F. Wang, S.Q. Jiao, K.C. Chou, and G.H. Zhang: Int. J. Refract. Met. H, 2020, vol. 86, 105118.

    Article  CAS  Google Scholar 

  10. M.J. Hudson, J.W. Peckett, and P.J.F. Harris: Ind. Eng. Chem. Res., 2005, vol. 44, pp. 5575–78.

    Article  CAS  Google Scholar 

  11. T. Ryu, H.Y. Sohn, K.S. Hwang, and Z.Z. Fang: J. Mater. Sci., 2008, vol. 43, pp. 5185–92.

    Article  CAS  Google Scholar 

  12. H.H. Nersisyan, H.I. Won, C.W. Won, and J.H. Lee: Mater. Chem. Phys., 2005, vol. 94, pp. 153–58.

    Article  CAS  Google Scholar 

  13. Z.W. Cui, X.K. Li, Y. Cong, Z.J. Dong, G.M. Yuan, and J. Zhang: New Carbon Mater., 2017, vol. 32, pp. 205–12.

    Article  CAS  Google Scholar 

  14. M. Yan, Q. Xiong, J. Huang, X. Hou, L. Zhang, X. Li, and Z. Feng: Ceram. Int., 2021, vol. 47, pp. 17589–96.

    Article  CAS  Google Scholar 

  15. X. Kan, J. Ding, C. Yu, C. Deng, H. Zhu, and H. Hou: Microporous Mesoporous Mater., 2021, vol. 318, 111030.

    Article  CAS  Google Scholar 

  16. W. Qiu, Y. Liu, J. Ye, H. Fan, and G. Wang: Powder Technol., 2017, vol. 310, pp. 228–33.

    Article  CAS  Google Scholar 

  17. K. Zhang, Z. Shi, X. Zhang, Z. Zhang, B. Ge, H. Xia, Y. Guo, and G. Qiao: Ceram. Int., 2017, vol. 43, pp. 8089–97.

    Article  CAS  Google Scholar 

  18. H. Yabe, Y. Ito, K. Ema, and J. Qishi: ECS Proc., 1987, vol. 1, p. 804.

    Google Scholar 

  19. I. Novoselova, S. Kuleshov, and E. Fedoryshena: ECS Meet. Abstr., 2016, vol. 47, pp. 3469–69.

    Article  Google Scholar 

  20. I. Novoselova, S. Kuleshov, and A. Omel’chuk: Meet Abstr., 2023, vol. 26, p. 1744.

    Article  Google Scholar 

  21. X. Xiao, X. Xi, Z. Nie, L. Zhang, and L. Ma: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 692–700.

    Article  Google Scholar 

  22. L. Zhang, Z. Nie, X. Xi, L. Ma, X. Xiao, and M. Li: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 334–40.

    Article  Google Scholar 

  23. Q. Zhang, X. Xi, L. Zhang, and Z. Nie: Ceram. Int., 2022, vol. 48, pp. 19444–51.

    Article  CAS  Google Scholar 

  24. X. Wang, L. Zhang, X. Xi, and Z. Nie: J. Electrochem. Soc., 2022, vol. 169, 051501.

    Article  CAS  Google Scholar 

  25. V. Tomkute, A. Solheim, and E. Olsen: Energ. Fuel, 2014, vol. 28, pp. 5345–53.

    Article  CAS  Google Scholar 

  26. B. Deng, J. Tang, X. Mao, Y. Song, H. Zhu, W. Xiao, and D. Wang: Environ. Sci. Technol., 2016, vol. 50, pp. 10588–95.

    Article  CAS  PubMed  Google Scholar 

  27. M.D. Demetriou, N.M. Ghoniem, and A.S. Lavine: Acta Mater., 2002, vol. 50, pp. 1421–32.

    Article  CAS  Google Scholar 

  28. I. Novoselova, S.V. Kuleshov, A.A. Omel’chuk, V.V. Soloviev, and N.V. Solovyova: ECS Trans., 2020, vol. 98, p. 317.

    Article  CAS  Google Scholar 

  29. G. Gunawardena, G. Hills, I. Montenegro, and B. Scharifker: J. Electroanal. Chem., 1982, vol. 138, pp. 225–39.

    Article  CAS  Google Scholar 

  30. B. Scharifker and G. Hills: Electrochim. Acta, 1983, vol. 28, pp. 879–89.

    Article  CAS  Google Scholar 

  31. I. Novoselova, S. Kuleshov, E. Fedoryshena, and V. Bykov: ECS Trans., 2018, vol. 86, p. 81.

    Article  CAS  Google Scholar 

  32. S. Hochstrasser-Kurz, D. Reiss, T. Suter, C. Latkoczy, D. Günther, S. Virtanen, P.J. Uggowitzer, and P. Schmutz: J. Electrochem. Soc., 2008, vol. 155, p. C415.

    Article  CAS  Google Scholar 

  33. P.V. Krasovskii, O.S. Malinovskaya, A.V. Samokhin, Y.V. Blagoveshchenskiy, V.A. Kazakov, and A.A. Ashmarin: Appl. Surf. Sci., 2015, vol. 339, pp. 46–54.

    Article  CAS  Google Scholar 

  34. M.D. Abad, M.A. Muñoz-Márquez, S. El Mrabet, A. Justo, and J.C. Sánchez-López: Surf Coat. Technol., 2010, vol. 204, pp. 3490–3500.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China for Distinguished Young Scholar (52025042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Xi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xi, X., Zhang, L. et al. Preparation of Tungsten Carbide Powder by In Situ Electrolysis Utilizing Self-Consuming Graphite Anode. Metall Mater Trans B (2024). https://doi.org/10.1007/s11663-024-03040-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11663-024-03040-2

Navigation