Skip to main content
Log in

Effect of Cooling Rate on δ-Ferrite Formation and Sigma Precipitation Behavior of 254SMO Super-Austenitic Stainless Steel During Solidification

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The formation of δ-ferrite and the precipitation behavior of the sigma phase during the solidification of 254SMO super-austenitic stainless steel (SASS) were investigated at five typical cooling rates (6 °C/min to 1000 °C/min) via high-temperature confocal scanning laser microscopy (HT-CSLM). The results showed that the 254SMO steel featured a significant dendritic solidified structure. With increasing cooling rates from 6 °C/min to 1000 °C/min, the initial solidification temperature and the secondary dendrite arm spacing (SDAS) of 254SMO gradually decreased and could be expressed as a function of cooling rates, the average sizes of SDAS were 113.33, 57.05, 34.98, 32.84 and 14.04 μm. δ-ferrite was formed through a divorced eutectic reaction in the late solidification stage and existed in the interdendritic region. As the cooling rate increased, the δ-ferrite phase content in the steel sample first decreased from 3.610 (6 °C/min) to 0.051 pct (100 °C/min) and then increased slightly to 0.089 pct (1000 °C/min). The sigma phase was formed from the solid-state phase transition of δ-ferrite. With increasing cooling rates, the variation trend of the sigma phase content was opposite to that of the δ-ferrite phase. The solidification mechanism of 254SMO at the five typical cooling rates was explored. Moreover, the distributions of Cr, Ni, and Mo in the solidified 254SMO SASS were characterized via electron probe microscopy. Cr and Mo were segregated in the interdendritic region, while Ni was clustered in the dendritic region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, and J.K.L. Lai: Mater. Sci. Eng. R Rep., 2009, vol. 65, pp. 39–104.

    Article  Google Scholar 

  2. Y.S. Hao, W.C. Liu, and Z.Y. Liu: Acta Metall. Sin. Eng., 2018, vol. 31, pp. 401–14.

    Article  CAS  Google Scholar 

  3. Y. Hao, W. Liu, and J. Li: Mater. Sci. Eng. A, 2018, vol. 736, pp. 258–68.

    Article  CAS  Google Scholar 

  4. M.J. Perricone and J.N. Dupont: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1267–80.

    Article  Google Scholar 

  5. J.W. Fu, Y.S. Yang, J.J. Guo, and W.H. Tong: Mater. Sci. Technol., 2008, vol. 24, pp. 941–44.

    Article  CAS  Google Scholar 

  6. M. Torkar, F. Vodopivec, and S. Petovar: Mater. Sci. Eng. A, 1993, vol. 173, pp. 313–16.

    Article  Google Scholar 

  7. P.L. Dong, H.X. Shang, and H. Wang: China Metall., 2017, vol. 27, pp. 7–13.

    Google Scholar 

  8. R.W. Fonda, E.M. Lauridsen, W. Ludwig, P. Tafforeau, and G. Spanos: Metall. Mater. Trans. A, 2007, vol. 38, pp. 2721–26.

    Article  Google Scholar 

  9. C. Lee, S. Roh, C. Lee, and S. Hong: Mater. Chem. Phys., 2018, vol. 207, pp. 91–97.

    Article  CAS  Google Scholar 

  10. A. Lescur, E. Stergar, J. Lim, S. Hertel’e, and R.H. Petrov: Mater. Charact., 2021, vol. 182, p. 111524.

    Article  CAS  Google Scholar 

  11. M. Bleckmann, J. Gleinig, J. Hufenbach, H. Wendrock, L. Giebeler, J. Zeisig, U. Diekmann, J. Eckert, and U. Kühn: J. Alloys Compd., 2015, vol. 634, pp. 200–07.

    Article  CAS  Google Scholar 

  12. D.S. Petrovi, G. Klannik, M. Pirnat, and J. Medved: J. Therm. Anal. Calorim., 2011, vol. 105, pp. 251–57.

    Article  Google Scholar 

  13. D.S. Petrovicˇ, M. Pirnat, G. Klancˇnik, P. Mrvar, and J. Medved: J. Therm. Anal. Calorim., 2012, vol. 109, pp. 1185–91.

    Article  Google Scholar 

  14. X. Li, F. Gao, J.H. Jiao, G.M. Cao, Y. Wang, and Z.Y. Liu: Mater. Charact., 2021, vol. 174, p. 111029.

    Article  CAS  Google Scholar 

  15. W.L. Wang, T.F. Luo, Z.H. Liu, and M.Y. Zhu: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 776–92.

    Article  Google Scholar 

  16. Y.S. Hao, J. Li, X. Li, W.C. Liu, G.M. Cao, C.G. Li, and Z.Y. Liu: J. Mater. Process. Technol., 2020, vol. 275, pp. 116326–35.

    Article  CAS  Google Scholar 

  17. J.H. Perepezko and G. Wilde: Curr. Opin. Solid St. M., 2016, vol. 20, pp. 3–12.

    Article  CAS  Google Scholar 

  18. E. Wielgosz and T. Kargu: J. Therm. Anal. Calorim., 2015, vol. 119, pp. 1547–53.

    Article  CAS  Google Scholar 

  19. T. Liu, M.J. Long, D.F. Chen, Y.W. Huang, J. Yang, H.M. Duan, L.T. Gui, and P. Xu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 338–52.

    Article  Google Scholar 

  20. A.D. Schino, M.G. Mecozzi, and M. Barteri: J. Mater. Sci., 2000, vol. 35, pp. 375–80.

    Article  Google Scholar 

  21. C. Wang, Y. Wu, Y.A. Guo, J.T. Guo, and L.Z. Zhou: J. Alloys Compd., 2019, vol. 784, pp. 266–75.

    Article  CAS  Google Scholar 

  22. R. Marin, C. Hervé, J. Zollinger, M. Dehmas, B. Rouat, A. Lamontagne, N. Loukachenko, and L. Lhenry: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 3526–34.

    Article  Google Scholar 

  23. W.L. Wang, Z.J. An, S. Luo, and M.Y. Zhu: J. Alloys Compd., 2022, vol. 909, p. 164750.

    Article  CAS  Google Scholar 

  24. Y.B. Zhang, D.N. Zou, X.Q. Wang, Y.N. Li, Y.C. Jiang, and L.B. Tong: J. Mater. Res. Technol., 2022, vol. 18, pp. 1855–64.

    Article  CAS  Google Scholar 

  25. J. Zeng, C.Y. Zhu, W.L. Wang, and X. Li: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 2522–31.

    Article  Google Scholar 

  26. W.G. Jiang, J.S. Dong, and L. Wang: J. Mater. Sci. Technol., 2011, vol. 27, pp. 831–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of this work by the National Natural Science Foundation of China (51774226), the Major Program of Science and Technology in Shanxi Province (Nos. 20191102006 and 202202050201019), the Shaanxi Outstanding Youth Fund project (Grant Number 2021JC-45) and Key international cooperation projects in Shaanxi Province (Grant Number 2020KWZ-007).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dening Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zou, D., Li, M. et al. Effect of Cooling Rate on δ-Ferrite Formation and Sigma Precipitation Behavior of 254SMO Super-Austenitic Stainless Steel During Solidification. Metall Mater Trans B 54, 3497–3507 (2023). https://doi.org/10.1007/s11663-023-02927-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02927-w

Navigation