Skip to main content
Log in

Characteristics of Sulfides in Commercial Ca-Treated Resulfurized Steel With Different Deoxidation Modes

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this paper, based on the three heats of commercial Ca-treated resulfurized steel with different deoxidation modes, the characteristics of sulfides in bars were analyzed by Micro-CT, and the characteristics and formation of duplex (Ca,Mn)S inclusions in bars were analyzed and discussed. The results indicate as the decrease of Al content in molten steel, Ca content in bar increases. The morphologies and distribution of sulfides can be further improved using Ca–Al or Ca deoxidation compared to Al deoxidation. Under Al or Ca–Al deoxidation mode, the compositions of core oxides are similar, and the core oxides mainly formed during solidification. Under Ca deoxidation mode, CaO–MgO–Al2O3–SiO2 oxides with higher CaO and SiO2 content formed in molten steel, which can directly become nucleation cores of sulfides, so the compositions of core oxides have an obvious change. The elongation of sulfides can be further inhibited using Ca–Al deoxidation compared to Ca deoxidation, which results from two reasons. On the one hand, under Ca–Al deoxidation mode, more Ca atoms migrate from oxides to wrapping sulfides during solidification, and CaS content in (Ca,Mn)S increases more compared to Ca deoxidation. On the other hand, more duplex (Ca,Mn)S inclusions formed in steel using Ca–Al deoxidation compared to Ca deoxidation. In order to better control the shape of sulfides and improve the castability of molten steel, Ca–Al deoxidation is the optimal deoxidation mode, and Al content should be controlled as 0.008 to 0.012 pct when Ca content is about 15 to 20 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. N. Ånmark, A. Karasev, and P.G. Jönsson: Materials, 2015, vol. 8, pp. 751–83.

    Google Scholar 

  2. H. Park, C. Lee, K.W. Kim, S.D. Kim, J.H. Jang, H.Y. Ha, J. Moon, C.H. Lee, and S.J. Park: Mater. Sci. Eng. A, 2022, vol. 856, p. 143939.

    CAS  Google Scholar 

  3. J.L. Lu, G.G. Cheng, G.G. Cheng, J.L. Che, L.S. Wang, and G.J. Xiong: Met. Mater. Int., 2019, vol. 25, pp. 473–86.

    CAS  Google Scholar 

  4. C. Temmel, B. Karlsson, and N.G. Ingesten: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2995–3007.

    CAS  Google Scholar 

  5. A. Abyazi and A.R. Ebrahimi: Mater. Sci. Technol., 2016, vol. 32, pp. 976–84.

    CAS  Google Scholar 

  6. C.H. Leung and L.H. Vlack: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 987–91.

    Google Scholar 

  7. N. Tsunekage and H. Tsubakino: ISIJ Int., 2001, vol. 41, pp. 498–505.

    CAS  Google Scholar 

  8. L.Z. Jiang and K. Cui: Steel Res. Int., 1997, vol. 68, pp. 163–68.

    CAS  Google Scholar 

  9. A.D. Wilson: Metallography, 1979, vol. 12, pp. 233–55.

    CAS  Google Scholar 

  10. C. Temmel, B. Karlsson, and N.G. Ingesten: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1132–44.

    CAS  Google Scholar 

  11. J. Jung, J. Shin, and S. Lee: J. Mater. Eng. Perform., 2015, vol. 24, pp. 2658–64.

    CAS  Google Scholar 

  12. N. Ånmark and T. Björk: Wear, 2016, vol. 368, pp. 173–82.

    Google Scholar 

  13. N. Ånmark, T. Björk, A. Ganea, P. Ölund, S. Hogmark, A. Karasev, and P.G. Jönsson: Wear, 2015, vol. 334, pp. 13–22.

    Google Scholar 

  14. X.D. Fang and D. Zhang: Wear, 1996, vol. 197, pp. 169–78.

    CAS  Google Scholar 

  15. V. Prešern, B. Koroušić, and J.W. Hastie: Steel Res. Int., 1991, vol. 62, pp. 289–95.

    Google Scholar 

  16. W. Yang, L.F. Zhang, X.H. Wang, Y. Ren, X.F. Liu, and Q.L. Shan: ISIJ Int., 2013, vol. 53, pp. 1401–10.

    CAS  Google Scholar 

  17. H.M. Pielet and D. Bhattacharya: Metall. Mater. Trans. B, 1984, vol. 15B, pp. 547–62.

    CAS  Google Scholar 

  18. Y.T. Guo, Q. Wang, G.J. Chen, and S.P. He: J. Iron. Steel Res. Int., 2015, vol. 22, pp. 87–92.

    Google Scholar 

  19. G.J. Chen, S.P. He, Y.T. Guo, B.Y. Shen, S. Zhao, and Q. Wang: J. Iron. Steel Res. Int., 2015, vol. 22, pp. 590–97.

    Google Scholar 

  20. J.F. Xu, F.X. Huang, and X.H. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1217–27.

    Google Scholar 

  21. Z.W. Hou, M. Jiang, E.J. Yang, S.Y. Gao, and X.H. Wang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3056–66.

    Google Scholar 

  22. H.J. Zhong, M. Jiang, Z.Y. Wang, X.G. Zhen, H.M. Zhao, T.G. Li, and X.H. Wang: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 593–601.

    Google Scholar 

  23. J. Gamutan, T. Miki, and T. Nagasaka: ISIJ Int., 2020, vol. 60, pp. 1610–16.

    CAS  Google Scholar 

  24. H. Ohta and H. Suito: ISIJ Int., 2006, vol. 46, pp. 480–89.

    CAS  Google Scholar 

  25. J.L. Lu, G.G. Cheng, L. Chen, G.J. Xiong, and L.S. Wang: ISIJ Int., 2018, vol. 58, pp. 1307–15.

    CAS  Google Scholar 

  26. A. Larsson and S. Ruppi: Mater. Sci. Eng. A, 2001, vol. 313, pp. 160–69.

    Google Scholar 

  27. T. Kano and T. Hanyuda: DENKI-SEIKO, 2004, vol. 75, pp. 27–34.

    CAS  Google Scholar 

  28. Y.T. Guo, S.P. He, G.J. Chen, and Q. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2549–57.

    Google Scholar 

  29. J.L. Lu, W.S. Qiu, G.G. Cheng, H. Long, and Y. Li: Iron. Steel, 2022, vol. 57, pp. 118–28. ((Chinese)).

    CAS  Google Scholar 

  30. Y. Li, G.G. Cheng, J.L. Lu, and H. Long: Met. Mater. Int., 2023, vol. 29, pp. 1019–33.

    CAS  Google Scholar 

  31. L. Holappa, M. Hämäläinen, M. Liukkonen, and M. Lind: Ironmak. Steelmak., 2003, vol. 30, pp. 111–15.

    CAS  Google Scholar 

  32. W.V. Bielefeldt and A.C.F. Vilela: Steel Res. Int., 2015, vol. 86, pp. 375–85.

    CAS  Google Scholar 

  33. V. Gollapalli, M.B.V. Rao, P.S. Karamched, C.R. Borra, G.G. Roy, and P. Srirangam: Ironmak. Steelmak., 2019, vol. 46, pp. 663–70.

    CAS  Google Scholar 

  34. Z.Q. Shang, T. Li, S.F. Yang, J.C. Yan, and H. Guo: J. Mater. Res. Technol., 2020, vol. 9, pp. 3686–98.

    CAS  Google Scholar 

  35. Y. Zhao, T. Li, G.Z. Tang, H. Guo, J.C. Yan, X.P. Guo, and Y.L. Zhu: J. Mater. Res. Technol., 2022, vol. 17, pp. 1427–37.

    CAS  Google Scholar 

  36. J.H. Chu, L.Q. Zhang, J. Yang, Y.P. Bao, N. Ali, and C.J. Zhang: Mater. Charact., 2022, vol. 194, p. 112367.

    CAS  Google Scholar 

  37. Y. Li, G.G. Cheng, J.L. Lu, and J. Sun: ISIJ Int., 2022, vol. 62, pp. 2266–75.

    CAS  Google Scholar 

  38. D.W. Zhao, H.B. Li, C.L. Bao, and J. Yang: ISIJ Int., 2015, vol. 55, pp. 2115–24.

    CAS  Google Scholar 

  39. P.J. Chen, C.Y. Zhu, G.Q. Li, Y.W. Dong, and Z.C. Zhang: ISIJ Int., 2017, vol. 57, pp. 1019–28.

    CAS  Google Scholar 

  40. J.H. Shin and J.H. Park: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 311–24.

    Google Scholar 

  41. P.S. Song, Y.Q. Li, Q. Ren, Y. Ren, and L.F. Zhang: Mater. Trans. B, 2023, vol. 54B, pp. 1468–82.

    Google Scholar 

  42. Q. Ren, W. Yang, L. Cheng, L.F. Zhang, and A. Conejo: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 200–12.

    Google Scholar 

  43. W. Zheng, Z.H. Wu, G.Q. Li, Z. Zhang, and C.Y. Zhu: ISIJ Int., 2014, vol. 54, pp. 1755–64.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors were grateful for support from the National Natural Science Foundation of China (No. 51874034). The authors also appreciate the Shaoguan Iron and Steel Co., Ltd. for the technical help.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cheng, G., Lu, J. et al. Characteristics of Sulfides in Commercial Ca-Treated Resulfurized Steel With Different Deoxidation Modes. Metall Mater Trans B 54, 3343–3360 (2023). https://doi.org/10.1007/s11663-023-02913-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02913-2

Navigation