Skip to main content
Log in

Characteristics and Formation Mechanism of Duplex (Ca,Mn)S Inclusions in Commercial Ca-Treated Resulfurized Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this paper, in order to identify the formation mechanism of duplex (Ca,Mn)S inclusions in steel, based on the two heats of commercial Ca-treated resulfurized steel, the characteristics of duplex (Ca,Mn)S inclusions in bars, blooms and CaO-Al2O3 oxides in molten steel were observed and analyzed. The results indicate that there are three types of duplex (Ca,Mn)S inclusions in steel. The first type with over 20% Ca in (Ca,Mn)S is named as “Type-C”, the second with 4–20% Ca in (Ca,Mn)S is named as “Type-MC” and the third with below 4% Ca in (Ca,Mn)S is named as “Type-M”. Their core oxides are mainly Ca-Mg–Al-O oxides. The aspect ratios of duplex (Ca,Mn)S inclusions in bars decrease as Ca content in (Ca,Mn)S increases. From Type-M to Type-C, CaO content in core oxides increases, and Ca content in wrapping (Ca,Mn)S increases. The shape of duplex (Ca,Mn)S inclusions can be controlled through controlling CaO content in core oxides. During solidification, CaO-Al2O3 oxides become as heterogeneous nucleation cores of MnS inclusions, duplex (Ca,Mn)S inclusions forming in this way, and Ca in wrapping (Ca,Mn)S come from CaO in core oxides. The higher CaO content in core oxides, the higher Ca content in wrapping (Ca,Mn)S. Under the condition with specific Ca/S ratio in steel, to obtain more duplex (Ca,Mn)S inclusions, numbers of Type-C should be decreased, and numbers of Type-MC and Type-M should be increased. To achieve this goal, the key is to obtain larger numbers of CaO-Al2O3 oxides with lower CaO and smaller sizes in molten steel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Lu, G. Cheng, J. Che, Met. Mater. Int. 25, 473 (2019)

    Article  CAS  Google Scholar 

  2. A. Abyazi, A. Ebrahimi, Mater. Sci. Technol. 32, 976 (2016)

    Article  CAS  Google Scholar 

  3. C. Temmel, B. Karlsson, N. Ingesten, Metall. Mater. Trans. A 37, 2995 (2006)

    Article  Google Scholar 

  4. A. Wilson, Metall. 12, 233 (1979)

    Article  CAS  Google Scholar 

  5. J. Jung, J. Shin, S. Lee, J. Mater. Eng. Perform. 24, 2658 (2015)

    Article  CAS  Google Scholar 

  6. C. Temmel, B. Karlsson, N. Ingesten, Metall. Mater. Trans. A 39, 1132 (2008)

    Article  Google Scholar 

  7. N. Ånmark, A. Karasev, P. Jönsson, Mater. 8, 751 (2015)

    Article  Google Scholar 

  8. N. Ånmark, T. Björk, Wear 368, 173 (2016)

    Article  Google Scholar 

  9. N. Ånmark, A. Karasev, P. Jönsson, Steel Res. Int. 88, 1 (2017)

    Article  Google Scholar 

  10. C. Leung, L. Vlack, Metall. Mater. Trans. A 12, 987 (1981)

    Article  CAS  Google Scholar 

  11. N. Tsunekage, H. Tsubakino, ISIJ Int. 41, 498 (2001)

    Article  CAS  Google Scholar 

  12. D. Froschhammer, H. Tensi, H. Zoller, Metall. Mater. Trans. B 11, 169 (1980)

    Article  Google Scholar 

  13. S. Choudhary, A. Ghosh, ISIJ Int. 48, 1552 (2008)

    Article  CAS  Google Scholar 

  14. R. Piao, H. Lee, Y. Kang, ISIJ Int. 53, 2132 (2013)

    Article  CAS  Google Scholar 

  15. C. Blais, G.L.’ Espérance, H. LeHuy, Mater. Charact. 38, 25 (1997)

    Article  CAS  Google Scholar 

  16. A. Larsson, S. Ruppi, Mater. Sci. Eng. A 313, 160 (2001)

    Article  Google Scholar 

  17. Y. Guo, S. He, G. Chen, Metall. Mater. Trans. B 47, 2549 (2016)

    Article  CAS  Google Scholar 

  18. J. Tian, T. Qu, D. Wang, Arch. Metall. Mater. 63, 1599 (2018)

    CAS  Google Scholar 

  19. X. Li, X. Long, L. Wang, Mater. 13, 619 (2020)

    Article  CAS  Google Scholar 

  20. C. Cao, G. Wang, J. Li, Metall. Res. Technol. 118, 512 (2021)

    Article  CAS  Google Scholar 

  21. T. Kano, T. Hanyuda, DENKI-SEIKO 75, 27 (2004)

    Article  CAS  Google Scholar 

  22. T. Fujimatsu, N. Tsunekage, K. Hiraoka, Sanyo Techn. Rep. 11, 50 (2004)

    Google Scholar 

  23. D. Zhao, H. Li, C. Bao, ISIJ Int. 55, 2115 (2015)

    Article  CAS  Google Scholar 

  24. Y. Chu, W. Li, Y. Ren, Metall. Mater. Trans. B 50, 2047 (2019)

    Article  CAS  Google Scholar 

  25. Q. Ren, W. Yang, L. Cheng, Metall. Mater. Trans. B 51, 200 (2020)

    Article  CAS  Google Scholar 

  26. H. Ahmad, B. Zhao, S. Lyu, Metals 11, 2051 (2021)

    Article  CAS  Google Scholar 

  27. H. Kim, H. Lee, K. Oh, Met. Mater. Int. 6, 305 (2000)

    Article  CAS  Google Scholar 

  28. F. Li, H. Li, D. Huang, Met. Mater. Int. 24, 1394 (2018)

    Article  CAS  Google Scholar 

  29. Y. Ren, L. Zhang, Ironmaking Steelmaking 46, 558 (2019)

    Article  CAS  Google Scholar 

  30. J. Guo, S. Cheng, Z. Cheng, Steel Res. Int. 84, 545 (2013)

    Article  CAS  Google Scholar 

  31. J. Shin, J. Park, Metall. Mater. Trans. B 49, 311 (2018)

    Article  CAS  Google Scholar 

  32. C. Fincham, F. Richardson, Proc. R. Soc. A 223, 40 (1954)

    CAS  Google Scholar 

  33. G. Yan, Ph.D. thesis (University of Science and Technology, Beijing, 2006)

    Google Scholar 

  34. R. Geng, J. Li, C. Shi, ISIJ Int. 61, 1506 (2021)

    Article  CAS  Google Scholar 

  35. S. Li, G. Cheng, Z. Miao, ISIJ Int. 58, 1781 (2018)

    Article  Google Scholar 

  36. S. Gao, M. Wang, J. Guo, Met. Mater. Int. 27, 1306 (2021)

    Article  CAS  Google Scholar 

  37. G. Zhang, K. Chou, U. Pal, ISIJ Int. 53, 761 (2013)

    Article  CAS  Google Scholar 

  38. Y. Kang, Metall. Mater. Trans. B 52, 2859 (2021)

    Article  CAS  Google Scholar 

  39. B. Bramfitt, Metall. Trans. 1, 1987 (1970)

    Article  CAS  Google Scholar 

  40. J. Lu, W. Qiu, G. Cheng, Iron. Steel 57, 118 (2022). ((Chinese))

    CAS  Google Scholar 

Download references

Acknowledgements

The authors were grateful for support from the National Natural Science Foundation of China (No.51874034). The authors also appreciate the Shaoguan Iron and Steel Co., Ltd. for the technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoguang Cheng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cheng, G., Lu, J. et al. Characteristics and Formation Mechanism of Duplex (Ca,Mn)S Inclusions in Commercial Ca-Treated Resulfurized Steel. Met. Mater. Int. 29, 1019–1033 (2023). https://doi.org/10.1007/s12540-022-01290-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01290-w

Keywords

Navigation