Skip to main content
Log in

Study on the Effect of SEMS on the As-Cast Structure of Steel in Thin Slab Continuous Casting Using an Equiaxed-Columnar Solidification Model

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Strand electromagnetic stirring (SEMS) is widely applied in thin slab continuous casting to improve the equiaxed crystal ratio (ECR) of steel. To provide a deeper insight into the role of SEMS in controlling the flow pattern, superheat transportation, macrosegregation, and as-cast structure in the whole strand. A three-phase equiaxed-columnar solidification model was developed to predict the solidification process. The anisotropic permeability of directional columnar structures was integrated into the model by tracking the columnar growing direction. Numerical results showed that two recirculating flow regions came into being under the one-way moving magnetic field induced by the SEMS. The upward recirculating flow deflected the nozzle jet and assembled a superheat melt impinging towards the narrow face under the electromagnetic stirring. Level velocity and level height in the stirring direction were disturbed by the upward flow. Equiaxed grains formed in the stirring direction were less than the volume fraction on the other side. The one-way magnetic field also caused an asymmetric distribution of equiaxed grains in the thickness direction. Applying SEMS was beneficial to the improvement of ECR. The ECR in the strand was 4 pct in the absence of electromagnetic stirring, and it increased to 17.4 pct after applying the SEMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\({\mathbf{B}}\) :

Magnetic flux density (T)

\(c_{{\text{l}}}\), \(c_{{\text{e}}}\), \(c_{{\text{c}}}\) :

Species concentration (−)

\(c_{{{\text{ref}}}}\) :

Reference concentration (−)

\(c_{{\text{l}}}^{*}\), \(c_{{\text{s}}}^{*}\) :

Equilibrium concentration at interface (−)

\(c_{{{\text{mix}}}}\) :

Mixed concentration (−)

\(c_{\text{p}}\) :

Specific heat (J kg1 K1)

\(C_{ji}^{{}}\)(\(= - C_{ij}\)):

Species exchange term (kg m3 s1)

\(D_{{\text{l}}}\), \(D_{{\text{e}}}\), \(D_{{\text{c}}}\) :

Diffusion coefficient (m2 s1)

\({\mathbf{E}}\) :

Electric field intensity (V m1)

\(f_{{\text{l}}}\), \(f_{{\text{e}}}\), \(f_{{\text{c}}}\) :

Volume fraction (−)

\({\mathbf{F}}_{ji}^{{}}\)(\(= - {\mathbf{F}}_{ij}\)):

Momentum exchange rate (kg m2 s2)

\({\mathbf{F}}_{L}^{{}}\) :

Lorentz force (kg m2 s2)

\({\mathbf{g}}\) :

Gravity (m s2)

\(h_{{\text{l}}}\), \(h_{{\text{e}}}\), \(h_{{\text{c}}}\) :

Enthalpy (J kg1)

\(H^{*}\) :

Heat transfer coefficient between phases (W m3 K1)

\({\mathbf{H}}\) :

Magnetic field intensity (A m1)

\({\mathbf{j}}\) :

Induced current density (A m2)

\({\mathbf{J}}\) :

Current density (A m2)

\(k_{{\text{l}}}\), \(k_{{\text{e}}}\), \(k_{{\text{c}}}\) :

Thermal conductivity (W m1 K1)

\( k_{{{\text{K}}\& {\text{C}}}} \) :

Kozeny–Carmen correlation constant (−)

\( K_{{{\text{K}}\& {\text{C}}}} \) :

Mush permeability (m2)

\({\mathbf{K}}_{\text{lc}}\) :

Anisotropic permeability tensor (m2)

\(K_{\text{le}}\), \(K_{\text{ce}}\) :

Drag force coefficient (kg m3 s1)

\(L\) :

Latent heat (J kg1)

\(m\) :

Liquidus line slope (K)

\(M_{ji}\)(\(= - M_{ij}\)):

Mass transfer rate (kg m3 s1)

\(n_{\text{e}}\) :

Nucleus number density (m3)

\(n_{\max }\) :

Maximum equiaxed grain density (m3)

\({\mathbf{n}}_{{\text{z}}}\) :

Unit vector in the casting direction (−)

\({\mathbf{n}}_{{\text{f}}}\) :

Unit vector in the slab surface (−)

\(N_{\text{nu}}\) :

Heterogeneous undercooling nucleation rate (m3 s1)

\(N_{\text{frag}}\) :

Columnar fragmentation rate (m3 s1)

\(p\) :

Pressure (Pa)

\(Q_{ji}^{{}}\)(\(= - Q_{ij}\)):

Energy exchange term (W m3)

\(Q_{J}^{{}}\) :

Joule heat (W m3)

\(R_{{{\text{tip}}}}\) :

Primary columnar tip radius (m)

\(S_{{\text{c}}}^{{}}\), \(S_{{\text{e}}}\) :

Interfacial area concentration of envelope (m1)

\(T_{{\text{l}}}\), \(T_{{\text{e}}}\), \(T_{{\text{c}}}\) :

Temperature (K)

\(T_{{{\text{ref}}}}\) :

Reference temperature (K)

\(\Delta T\) :

Constitutional undercooling (K)

\(\Delta T_{\text{N}}\) :

Undercooling for maximum nucleation rate (K)

\(\Delta T_{\sigma }\) :

Gaussian distribution width (K)

\(U_{{{\text{cast}}}}\) :

Casting speed (m s1)

\(v_{{\text{c,tip}}}\) :

Growth speed of primary columnar tip (m s1)

\({\mathbf{v}}_{{\text{l}}}\), \({\mathbf{v}}_{{\text{e}}}\), \({\mathbf{v}}_{{\text{c}}}\), \({\mathbf{v}}_{{{\text{wall}}}}\) :

Velocity vector (m s1)

\(v_{Rc}\) :

Growth speed in the radius direction of columnar trunks (m s1)

\(v_{Re}\) :

Growth speed in the radius direction of equiaxed grains (m s1)

\(\beta_{{\text{T}}}\) :

Thermal expansion coefficient (K1)

\(\beta_{{\text{c}}}\) :

Solutal expansion coefficient (−)

\(\sigma\), \(\sigma_{{\text{e}}}\), \(\sigma_{{\text{c}}}\) :

Electrical conductivity (S m1)

\(\Phi_{{{\text{imp}}}}^{{\text{c}}}\), \(\Phi_{{{\text{imp}}}}^{{\text{e}}}\) :

Growing surface impingement factor (−)

\(\lambda_{1}\) :

Primary columnar arm space (m)

\(\lambda_{2}\) :

Secondary columnar arm space (m)

\(\mu_{{\text{l}}}\) :

Viscosity (kg m1 s1)

\(\mu_{\text{mag}}\) :

Vacuum magnetic permeability (H m1)

\(\gamma\) :

Fragmentation coefficient (−)

\(\rho\), \(\rho_{{\text{s}}}\) :

Density (kg m3)

\(\rho_{{{\text{ref}}}}\) :

Reference density (kg m3)

\(\tilde{\rho }\) :

Correction density (kg m3)

\(\varphi\) :

Electric potential (V)

\({{\varvec{\uptau}}}_{i}\) :

Stress–strain tensors (kg m1 s1)

c:

Columnar phase

e:

Equiaxed phase

l:

Liquid phase

References

  1. H. Yu, Y.L. Kang, K.L. Wang, J. Fu, Z.B. Wang, and D.L. Liu: Mater. Sci. Eng. A, 2003, vol. 363, pp. 86–92. https://doi.org/10.1016/S0921-5093(03)00598-7.

    Article  CAS  Google Scholar 

  2. P. Jayakrishna, S. Chakraborty, S. Ganguly, and P. Talukdar: Can. Metall. Q., 2021, vol. 60, pp. 320–49. https://doi.org/10.1080/00084433.2021.2014712.

    Article  CAS  Google Scholar 

  3. B.K. Li and F. Tsukihashi: ISIJ Int., 2006, vol. 46, pp. 1833–38. https://doi.org/10.2355/isijinternational.46.1833.

    Article  CAS  Google Scholar 

  4. R. Singh, B.G. Thomas, and S.P. Vanka: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1201–21. https://doi.org/10.1007/s11663-013-9877-x.

    Article  CAS  Google Scholar 

  5. L.S. Zhang, X.F. Zhang, B. Wang, Q. Liu, and Z.G. Hu: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 295–306. https://doi.org/10.1007/s11663-013-9948-z.

    Article  CAS  Google Scholar 

  6. J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1597–611. https://doi.org/10.1007/s11661-006-0103-1.

    Article  CAS  Google Scholar 

  7. A. Vakhrushev, A. Kharicha, E. Karimi-Sibaki, M. Wu, A. Ludwig, G. Nitzl, Y. Tang, G. Hackl, J. Watzinger, and S. Eckert: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3193–3207. https://doi.org/10.1007/s11663-021-02247-x.

    Article  CAS  Google Scholar 

  8. Z.Q. Liu, A. Vakhrushev, M.H. Wu, E. Karimi-Sibaki, A. Kharicha, A. Ludwig, and B.K. Li: Metals, 2018, vol. 8, p. 609. https://doi.org/10.3390/met8080609.

    Article  CAS  Google Scholar 

  9. H. Shibata, S. Itoyama, Y. Kishimoto, S. Takeuchi, and H. Siekiguchi: ISIJ Int., 2006, vol. 46, pp. 921–30. https://doi.org/10.2355/isijinternational.46.921.

    Article  CAS  Google Scholar 

  10. J. Gong, H.P. Liu, X.H. Wang, and Y.P. Bao: J. Iron. Steel Res. Int., 2015, vol. 22, pp. 414–22. https://doi.org/10.1016/s1006-706x(15)30021-2.

    Article  Google Scholar 

  11. C.J. Wang, Z.Q. Liu, and B.K. Li: Metals, 2021, vol. 11, p. 948. https://doi.org/10.3390/met11060948.

    Article  CAS  Google Scholar 

  12. Z. Zhang, M.H. Wu, H.J. Zhang, S. Hahn, F. Wimmer, A. Ludwig, and A. Kharicha: J. Mater. Process. Technol., 2022, vol. 301, p. 117434. https://doi.org/10.1016/j.jmatprotec.2021.117434.

    Article  CAS  Google Scholar 

  13. T. Wang, L. Hachani, Y. Fautrelle, Y. Delannoy, E. Wang, X. Wang, and O. Budenkova: Int. J. Heat Mass Transf., 2020, vol. 151, p. 119414. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119414.

    Article  CAS  Google Scholar 

  14. Z.Q. Liu, R. Niu, Y.D. Wu, B.K. Li, Y. Gan, and M.H. Wu: Int. J. Heat Mass Transf., 2021, vol. 173, p. 121237. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121237.

    Article  CAS  Google Scholar 

  15. C.J. Wang, Z.Q. Liu, and B.K. Li: Int. J. Heat Mass Transf., 2022, vol. 194, p. 122974. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122974.

    Article  Google Scholar 

  16. L. Hachani, K. Zaidat, and Y. Fautrelle: Int. J. Heat Mass Transf., 2015, vol. 85, pp. 438–54. https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.145.

    Article  CAS  Google Scholar 

  17. H.H. Ge, F.L. Ren, J. Li, X.J. Han, M.X. Xia, and J.G. Li: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1139–50. https://doi.org/10.1007/s11661-016-3910-z.

    Article  CAS  Google Scholar 

  18. J. Li, M.H. Wu, A. Ludwig, and A. Kharicha: Int. J. Heat Mass Transf., 2014, vol. 72, pp. 668–79. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.079.

    Article  CAS  Google Scholar 

  19. M.H. Wu, J. Domitner, and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 945–64. https://doi.org/10.1007/s11661-011-0940-4.

    Article  CAS  Google Scholar 

  20. D.B. Jiang and M.Y. Zhu: Metall. Mater. Trans. B, 2016, vol. 47, pp. 3446–58. https://doi.org/10.1007/s11663-016-0772-0.

    Article  CAS  Google Scholar 

  21. D.B. Jiang and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 444–55. https://doi.org/10.1007/s11663-016-0864-x.

    Article  CAS  Google Scholar 

  22. D.B. Jiang, W.L. Wang, S. Luo, C. Ji, and M.Y. Zhu: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 3120–31. https://doi.org/10.1007/s11663-017-1104-8.

    Article  CAS  Google Scholar 

  23. R. Guan, C. Ji, M.Y. Zhu, and S.M. Deng: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2571–83. https://doi.org/10.1007/s11663-018-1352-2.

    Article  CAS  Google Scholar 

  24. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63. https://doi.org/10.1016/0025-5416(84)90199-x.

    Article  CAS  Google Scholar 

  25. T. Wang, S. Semenov, E.G. Wang, Y. Delannoy, Y. Fautrelle, and O. Budenkova: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 3039–54. https://doi.org/10.1007/s11663-019-01703-z.

    Article  CAS  Google Scholar 

  26. A. Vakhrushev, M.H. Wu, A. Ludwig, Y. Tang, G. Hackl, and G. Nitzl: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1024–37. https://doi.org/10.1007/s11663-014-0030-2.

    Article  CAS  Google Scholar 

  27. A. Ludwig and M.H. Wu: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3673–83. https://doi.org/10.1007/s11661-002-0241-z.

    Article  CAS  Google Scholar 

  28. Y.J. Zheng, M.H. Wu, A. Kharicha, and A. Ludwig: Modell. Simul. Mater. Sci. Eng., 2018, vol. 26, p. 015004. https://doi.org/10.1088/1361-651X/aa86c5.

    Article  Google Scholar 

  29. C.M.G. Rodrigues, M.H. Wu, H.J. Zhang, A. Ludwig, and A. Kharicha: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 4609–622. https://doi.org/10.1007/s11661-021-06414-2.

    Article  CAS  Google Scholar 

  30. M.H. Wu, A. Fjeld, and A. Ludwig: Comput. Mater. Sci, 2010, vol. 50, pp. 32–42. https://doi.org/10.1016/j.commatsci.2010.07.005.

    Article  CAS  Google Scholar 

  31. T. Takaki, S. Sakane, M. Ohno, Y. Shibuta, and T. Aoki: Acta Mater., 2019, vol. 164, pp. 237–49. https://doi.org/10.1016/j.actamat.2018.10.039.

    Article  CAS  Google Scholar 

  32. Y. Mitsuyama, T. Takaki, S. Sakane, Y. Shibuta, and M. Ohno: Acta Mater., 2020, vol. 188, pp. 282–87. https://doi.org/10.1016/j.actamat.2020.02.016.

    Article  CAS  Google Scholar 

  33. C.Y. Wang, S. Ahuja, C. Beckermann, and H.C. Degroh: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 111–19. https://doi.org/10.1007/Bf02648984.

    Article  CAS  Google Scholar 

  34. B. Petrus, K. Zheng, X. Zhou, B.G. Thomas, and J. Bentsman: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 87–103. https://doi.org/10.1007/s11663-010-9452-7.

    Article  CAS  Google Scholar 

  35. Thermo-Calc Software TCFE7 Steels/Fe-alloys Database, https://thermocalc.com/products/databases/steel-and-fe-alloys/.

  36. K. Timmel, S. Eckert, G. Gerbeth, F. Stefani, and T. Wondrak: ISIJ Int., 2010, vol. 50, pp. 1134–41. https://doi.org/10.2355/isijinternational.50.1134.

    Article  CAS  Google Scholar 

  37. E. Cadirli and M. Gunduz: J. Mater. Sci., 2000, vol. 35, pp. 3837–48. https://doi.org/10.1023/A:1004829413966.

    Article  CAS  Google Scholar 

  38. R. Moreau: Magnetohydrodynamics, Kluwer Academic Publishers, Norwell, 1990.

    Book  Google Scholar 

  39. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94–107. https://doi.org/10.1007/s11663-007-9109-3.

    Article  CAS  Google Scholar 

  40. J.E. Camporredondo, A.H. Castillejos, F.A. Acosta, E.P. Gutiérrez, and M.A. Herrera: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 541–60. https://doi.org/10.1007/s11663-004-0054-0.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51974071), National Key Research and Development Program of China (No. 2022YFB3705101), and the Opening project fund of Materials Service Safety Assessment Facilities (No. MSAF-2021-009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongqiu Liu or Baokuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Liu, Z. & Li, B. Study on the Effect of SEMS on the As-Cast Structure of Steel in Thin Slab Continuous Casting Using an Equiaxed-Columnar Solidification Model. Metall Mater Trans B 54, 3240–3258 (2023). https://doi.org/10.1007/s11663-023-02904-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02904-3

Navigation