Skip to main content

Advertisement

Log in

Multiscale Microstructure Evolution and Subgrain Strengthening of Warm-Rolled Ultrafine Pearlite Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

To optimize the synergy between the strength and ductility of ordinary medium-carbon steel, a pseudo-eutectic structure with ultrafine pearlite and pre-eutectic ferrite was formed by pretreatment and a multiscale lamellar structure was obtained by subsequent warm rolling. The multiscale lamellar structure is composed of cross-scale ferrite and granular or short-rod cementite. With increasing rolling temperature, the width of shear bands and the average grain size gradually increased, while the length of grain boundaries decreased. The average grain size of the steel after warm rolling at 550 °C to 600 °C is less than 0.57 μm, accompanied by a large number of subgrain/grain boundaries. And most of the cementite is short rod, the tensile strength is higher than 1.2 GPa and maintain a good elongation. The analysis of subgrain boundaries strengthening using geometrically necessary dislocations (GNDs) reveals that the additional strengthening of the warm-rolled specimens is mainly derived from subgrain boundaries of 5 to 10 deg. The formation of ultrafine shear bands within the coarse grains during warm rolling induced a gradient change in the Schmid factor and GNDs, leading to enhanced uniform elongation during plastic deformation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Islam and H.M.M.A. Rashed: Reference Module in Materials Science and Materials Engineering, Elsevier, Amsterdam, 2019.

    Google Scholar 

  2. Z.P. Xiong, I. Timokhina, and E. Pereloma: Prog. Mater. Sci., 2021, vol. 118, 100764.

    Article  CAS  Google Scholar 

  3. X. Li and K. Lu: Science, 2019, vol. 364, pp. 733–34.

    Article  CAS  Google Scholar 

  4. J. Liu: Front. Ecol. Evol., 2023, vol. 11, p. 1155401.

    Article  Google Scholar 

  5. I.A. Ovid’ko, R.Z. Valiev, and Y.T. Zhu: Prog. Mater. Sci., 2018, vol. 94, pp. 462–540.

    Article  Google Scholar 

  6. P. Sathiyamoorthi and H.S. Kim: Prog. Mater. Sci., 2022, vol. 123, 100709.

    Article  CAS  Google Scholar 

  7. Y. Zhu and X. Wu: Prog. Mater. Sci., 2023, vol. 131, 101019.

    Article  CAS  Google Scholar 

  8. M.C. Zhao, T. Hanamura, H. Qiu, K. Nagai, and K. Yang: Scr. Mater., 2006, vol. 54, pp. 1193–97.

    Article  CAS  Google Scholar 

  9. A. Ohmori, S. Torizuka, K. Nagai, N. Koseki, and Y. Kogo: Mater. Trans., 2004, vol. 45, pp. 2224–31.

    Article  CAS  Google Scholar 

  10. T. Inoue and Y. Kimura: Materials, 2022, vol. 15, p. 867.

    Article  CAS  Google Scholar 

  11. B. Poorganji, G. Miyamoto, T. Maki, and T. Furuhara: Scr. Mater., 2008, vol. 59, pp. 279–81.

    Article  CAS  Google Scholar 

  12. Z. Lv, L. Qian, S. Liu, L. Zhan, and S. Qin: Materials, 2020, vol. 13, p. 459.

    Article  CAS  Google Scholar 

  13. G. Yan, Y. Sun, J. Gu, and C. Li: Met. Sci. Heat Treat., 2021, vol. 63, pp. 70–79.

    Article  CAS  Google Scholar 

  14. L.N. Wang, B. Li, Y.D. Shi, G.W. Huang, W.P. Song, and S.Y. Li: Mater. Sci. Eng. A, 2019, vol. 743, pp. 309–13.

    Article  CAS  Google Scholar 

  15. V. Segal: Materials, 2018, vol. 11, p. 117.

    Article  Google Scholar 

  16. J.L. Ning, Y.T. Zhang, L. Huang, and Y.L. Feng: Mater. Des., 2017, vol. 120, pp. 280–90.

    Article  CAS  Google Scholar 

  17. G. Liu, M. Zhang, Y. Feng, K. Cao, S. Li, and Y. Wang: J. Mater. Res. Technol., 2022, vol. 18, pp. 3739–50.

    Article  CAS  Google Scholar 

  18. H. Zheng, L. Fu, X. Ji, Y. Ding, W. Wang, M. Wen, and A. Shan: Mater. Sci. Eng. A, 2021, vol. 824, 141860.

    Article  CAS  Google Scholar 

  19. A. Kundu and D.P. Field: Mater. Sci. Eng. A, 2016, vol. 667, pp. 435–43.

    Article  CAS  Google Scholar 

  20. L. Fan, T. Yang, Y. Zhao, J. Luan, G. Zhou, H. Wang, Z. Jiao, and C.T. Liu: Nat. Commun., 2020, vol. 11, p. 6240.

    Article  CAS  Google Scholar 

  21. C. Zheng, L. Li, W. Yang, and Z. Sun: Mater. Sci. Eng. A, 2014, vol. 617, pp. 31–38.

    Article  CAS  Google Scholar 

  22. W. Mao, A. Ning, and H. Guo: Int. J. Miner. Metall. Mater., 2016, vol. 23, pp. 1056–64.

    Article  CAS  Google Scholar 

  23. L. Evers: J. Mech. Phys. Solids, 2004, vol. 52, pp. 2379–401.

    Article  Google Scholar 

  24. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239–63.

    Article  Google Scholar 

  25. L.P. Kubin and A. Mortensen: Scr. Mater., 2003, vol. 48, pp. 119–25.

    Article  CAS  Google Scholar 

  26. K.K. Ray and D. Mondal: Acta Metall. Mater., 1991, vol. 39, pp. 2201–08.

    Article  CAS  Google Scholar 

  27. H. Qiu, R. Ito, and K. Hiraoka: Mater. Sci. Eng. A, 2006, vol. 435–436, pp. 648–52.

    Article  Google Scholar 

  28. K. Takeda, N. Nakada, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2008, vol. 48, pp. 1122–25.

    Article  CAS  Google Scholar 

  29. S. Takaki: Mater. Sci. Forum, 2010, vol. 654–656, pp. 11–16.

    Article  Google Scholar 

  30. W.F. Smith and H. Javad: Foundations of Materials Science and Engineering, 4th ed. McGraw-Hill, Boston, 2006.

    Google Scholar 

  31. Y. Wang, Y. Tomota, T. Ohmura, W. Gong, S. Harjo, and M. Tanaka: Acta Mater., 2020, vol. 196, pp. 565–75.

    Article  CAS  Google Scholar 

  32. M.F. Ashby: Acta Metall., 1966, vol. 14, pp. 679–81.

    Article  CAS  Google Scholar 

  33. M.A. Meyers: Mechanical Behavior of Materials, 2nd ed. Emerald Group Publishing Limited, West Yorkshire, 2009.

    Google Scholar 

  34. S. Pandre, V. Mhatre, N. Kotkunde, and S.K. Singh: Mater. Today. Proc., 2021, vol. 46, pp. 9323–27.

    Article  CAS  Google Scholar 

  35. C. Song, H. Wang, Z. Sun, Z. Wei, H. Yu, H. Chen, and Y. Wang: Mater. Sci. Eng. A, 2020, vol. 777, p. 139084.

    Article  CAS  Google Scholar 

  36. C. Jia, Y. Shao, L. Guo, and Y. Liu: J. Constr. Steel Res., 2020, vol. 172, 106160.

    Article  Google Scholar 

  37. Q. Wang, S. Zhang, C.H. Zhang, J.Q. Wang, M.B. Shahzad, H.T. Chen, and J. Chen: Vacuum, 2019, vol. 161, pp. 225–31.

    Article  CAS  Google Scholar 

  38. N. Saeidi, F. Ashrafizadeh, B. Niroumand, and F. Barlat: Mater. Des., 2015, vol. 87, pp. 130–37.

    Article  CAS  Google Scholar 

  39. T.B. Hilditch, T. de Souza, and P.D. Hodgson, Welding and Joining of Advanced High Strength Steels (AHSS), 2015, pp. 9–28.

  40. M.J. Sohrabi, H. Mirzadeh, S. Sadeghpour, and R. Mahmudi: Int. J. Plasticity, 2023, vol. 160, 103502.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial supports from the National Science Foundation of China (NSFC) (Nos. 51974134), Major Science and Technology Special Project of Hebei Province (No. 21281008Z).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunli Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wan, D., Feng, Y. et al. Multiscale Microstructure Evolution and Subgrain Strengthening of Warm-Rolled Ultrafine Pearlite Steel. Metall Mater Trans B 54, 3216–3228 (2023). https://doi.org/10.1007/s11663-023-02902-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02902-5

Navigation