Skip to main content

Advertisement

Log in

Investigation on Porosity Formation With Pressure Drop Between Dendrite Tip and Root During Pressurized Solidification of 30Cr15Mo1N Ingot

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper presents a method based on Darcy’s law to determine the pressure drop between the dendrite tip and root during the formation of porosity. After verification by the measurement result of the porosity region in 30Cr15Mo1N ingot, this method is employed to investigate the change in the pressure drop with solidification pressure, considering various factors such as the second dendrite arm spacing, solid fraction, cooling rate, temperature gradient, density, liquidus temperature, and solidus temperature. The relationship between the pressure drop and solidification pressure determines the formation of porosity. The results demonstrate that as the solidification pressure increases from 0.3 to 0.7 MPa, the pressure drop decreases from 1.572 to 0.676 MPa. When the solidification pressure is below 0.6 MPa, the pressure drop consistently exceeds the solidification pressure, leading to inadequate interdendritic feeding of the molten steel and subsequent porosity formation. Conversely, when the solidification pressure ranges between 0.6 and 0.7 MPa, the pressure drop undergoes minimal change and is approximately equal to the solidification pressure, which leads to sufficient interdendritic feeding. Consequently, increasing the solidification pressure effectively suppresses the formation of porosity by reducing the hindrance to molten steel feeding and enhancing its feeding capacity. Furthermore, a more accurate determination of the constant kC was obtained to calculate the pressure drop in 30Cr15Mo1N ingot, within the range of 2.77 to 3.11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C.M. Tomasello and J.L. Maloney III.: Adv. Mater. Processes, 1998, vol. 154(1), pp. 58–60.

    CAS  Google Scholar 

  2. Z.Y. He, H.B. Li, Z.W. Ni, H.C. Zhu, Z.H. Jiang, H. Feng, and D.S. Mao: Steel Res. Int., 2021, vol. 92, p. 2100197.

    CAS  Google Scholar 

  3. W. Trojahn, E. Streit, H.A. Chin, and D. Ehlert: Materialwiss. Werkstofftech., 1999, vol. 30, pp. 605–11.

    CAS  Google Scholar 

  4. M.B. Horovitz, F.B. Neto, A. Garbogini, and A.P. Tcshiptschin: ISIJ Int., 1996, vol. 36, pp. 840–45.

    CAS  Google Scholar 

  5. H.B. Li, Z.Y. He, H.C. Zhu, H. Feng, Z.H. Jiang, Y. Wang, Z.W. Ni, and Y.B. Dai: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1721–32.

    Google Scholar 

  6. H.C. Zhu, H.B. Li, Z.W. Ni, Z.Y. He, Z.H. Jiang, H. Feng, S.C. Zhang, and D.S. Mao: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 50–59.

    Google Scholar 

  7. L. Zhao, H.C. Liao, Y. Pan, L. Wang, and Q.G. Wang: Scr. Mater., 2011, vol. 65, pp. 795–98.

    CAS  Google Scholar 

  8. Q.G. Wang, D. Apelian, and D.A. Lados: J. Light Met., 2001, vol. 1, pp. 73–84.

    CAS  Google Scholar 

  9. Q.Y. Zhang, D.K. Sun, S.Y. Pan, and M.F. Zhu: Int. J. Heat Mass Transf., 2020, vol. 146, 118838.

    CAS  Google Scholar 

  10. G. Arzumanyan: J. Cryst. Growth, 1990, vol. 99, pp. 859–63.

    CAS  Google Scholar 

  11. S.C. Zhang, J.T. Yu, H.B. Li, Z.H. Jiang, Y.F. Geng, H. Feng, B.B. Zhang, and H.C. Zhu: J. Mater. Sci. Technol., 2022, vol. 102, pp. 105–114.

    CAS  Google Scholar 

  12. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, S.C. Zhang, G.H. Liu, J.H. Zhu, P.B. Wang, B.B. Zhang, and G.W. Fan: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2493–2503.

    Google Scholar 

  13. M.R. Ridolfi and O. Tassa: Intermetallics, 2003, vol. 11, pp. 1335–38.

    CAS  Google Scholar 

  14. H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, and T. Zhang: Corros. Sci., 2022, vol. 204, 110396.

    CAS  Google Scholar 

  15. H.B. Li, Y. Han, H. Feng, G. Zhou, Z.H. Jiang, M.H. Cai, Y.Z. Li, and M.X. Huang: J. Mater. Sci. Technol., 2023, vol. 141, pp. 184–92.

    CAS  Google Scholar 

  16. M.C. Flemings: Metall. Trans., 1974, vol. 5(10), pp. 2121–34.

    CAS  Google Scholar 

  17. J.J. Sobczak, L. Drenchev, and R. Asthana: Int. J. Cast Met. Res., 2013, vol. 25(1), pp. 1–14.

    Google Scholar 

  18. A.F. Ilkhchy, M. Jabbari, and P. Davami: Int. Commun. Heat Mass Transf., 2012, vol. 39(5), pp. 705–12.

    Google Scholar 

  19. G.S. Li, W. Yu, and Q.W. Cai: J. Mater. Process. Technol., 2016, vol. 227, pp. 41–48.

    CAS  Google Scholar 

  20. H.C. Zhu, Z.H. Jiang, H.B. Li, H. Feng, W.C. Jiao, S.C. Zhang, P.B. Wang, and J.H. Zhu: ISIJ Int., 2018, vol. 58(7), pp. 1267–74.

    CAS  Google Scholar 

  21. V. Khalajzadeh and C. Beckermann: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 2239–54.

    Google Scholar 

  22. V. Khalajzadeh, K.D. Carlson, D.G. Backman, and C. Beckermann: Metall. Mater. Trans. A, 2017, vol. 48A, pp. 1797–1816.

    Google Scholar 

  23. H.B. Tao, H. Zhang, and M.L. Wang: Ironmak. Steelmak., 2020, vol. 47(4), pp. 351–60.

    Google Scholar 

  24. J.A. Taylor, G.B. Schaffer, and D.H. StJohn: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 1643–50.

    CAS  Google Scholar 

  25. K.D. Carlson and C. Beckermann: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 163–75.

    CAS  Google Scholar 

  26. D. Blondheim and A. Monroe: Int. J. Metalcast., 2022, vol. 16(1), pp. 330–41.

    Google Scholar 

  27. S. Bhagavath, B. Cai, R. Atwood, M. Li, B. Ghaffari, P.D. Lee, and S. Karagadde: Metall Mater. Trans. A, 2019, vol. 50A, pp. 4891–99.

    Google Scholar 

  28. Y.F. Zhang, J. Zheng, Y.T. Xia, H.G. Shou, W. Tan, W.J. Han, and Q. Liu: Mater. Sci. Eng. A, 2020, vol. 772, 138781.

    CAS  Google Scholar 

  29. N. Tenaglia, R. Boeri, G. Rivera, and J. Massone: Int. J. Cast Met. Res., 2016, vol. 29(1–2), pp. 112–20.

    CAS  Google Scholar 

  30. Y.W. Lee, E. Chang, and C.F. Chieu: Metall. Trans. B, 1990, vol. 21(4), pp. 715–22.

    Google Scholar 

  31. Z.Y. He, H.B. Li, H.C. Zhu, Y. Wang, Z.W. Ni, Z.H. Jiang, H. Feng, and S.C. Zhang, Metall. Mater. Trans. B, 2022, pp. 1–8.

  32. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, and Z.H. Jiang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3235–45.

    Google Scholar 

  33. Ch. Pequet, M. Rappaz, and M. Gremaud: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2095–2106.

    CAS  Google Scholar 

  34. W. Kurz, C. Bezençon, and M. Gäumann: Sci. Technol. Adv. Mater., 2001, vol. 2(1), pp. 185–91.

    CAS  Google Scholar 

  35. X.B. Li, S. Xiong, and Z. Guo: J. Mater. Sci. Technol., 2016, vol. 32(1), pp. 54–61.

    CAS  Google Scholar 

  36. B. Goyeau, D. Gobin, T. Benihaddadene, and M. Quintard: Metall Mater. Trans. B, 1999, vol. 30B, pp. 613–22.

    CAS  Google Scholar 

  37. K. Murakami, A. Shiraishi, and T. Okamoto: Acta Metall., 1983, vol. 31(9), pp. 1417–24.

    CAS  Google Scholar 

  38. Y. Natsume, D. Takahashi, K. Kawashima, E. Tanigawa, and K. Ohsasa: ISIJ Int, 2014, vol. 54(2), pp. 366–73.

    CAS  Google Scholar 

  39. S. Whitaker: Transp. Porous Med., 1986, vol. 1(1), pp. 3–25.

    Google Scholar 

  40. S. Mirbagheri and J. Silk: Mater. Des., 2007, vol. 28(1), pp. 356–61.

    CAS  Google Scholar 

  41. H. Darcy, Les fontaines publiques de la ville de Dijon: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau: Ouvrage terminé par un appendice relatif aux fournitures d'eau de plusieurs villes, au filtrage des eaux et à la fabrication des tuyaux de fonte, de plomb, de tôle et de bitumen, vol. 2. 1856: V. Dalmont.

  42. D.M. Stefanescu: Int. J. Cast Met. Res., 2005, vol. 18(3), pp. 129–43.

    CAS  Google Scholar 

  43. S. Brown, J. Spittle, D. Jarvis, and R. Walden-Bevan: Acta Mater., 2002, vol. 50(6), pp. 1559–69.

    CAS  Google Scholar 

  44. E. Khajeh and D.M. Maijer: Modell. Simul. Mater. Sci. Eng., 2012, vol. 20(3), p. 035004.

    Google Scholar 

  45. E. Khajeh and D.M. Maijer: Acta Mater., 2010, vol. 58(19), pp. 6334–44.

    CAS  Google Scholar 

  46. H.C. Zhu, H.B. Li, Z.Y. He, H. Feng, Z.H. Jiang, and T. He: ISIJ Int., 2021, vol. 61, pp. 1889–98.

    CAS  Google Scholar 

  47. H.C. Zhu, Z.H. Jiang, H.B. Li, P.B. Wang, and J.H. Zhu: Steel Res. Int., 2018, vol. 89(5), p. 1700475.

    Google Scholar 

  48. H.C. Zhu, H.B. Li, Z.H. Jiang, Z.Y. He, H. Feng, and S.C. Zhang: ISIJ Int., 2020, vol. 60(9), pp. 1978–84.

    CAS  Google Scholar 

  49. Y. Mitsuyama, T. Takaki, S. Sakane, Y. Shibuta, and M. Ohno: Acta Mater., 2020, vol. 188(15), pp. 282–87.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. U1960203/52325406/52374330], Science Fund for Distinguished Young Scholars of Liaoning Province [Grant No. 2023JH6/100500008], Fundamental Research Funds for the Central Universities [Grant No. N2125017] and Program of Introducing Talents of Discipline to Universities [Grant No. B21001].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua-Bing Li or Hong-Chun Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZY., Li, HB., Zhu, HC. et al. Investigation on Porosity Formation With Pressure Drop Between Dendrite Tip and Root During Pressurized Solidification of 30Cr15Mo1N Ingot. Metall Mater Trans B 54, 3155–3163 (2023). https://doi.org/10.1007/s11663-023-02898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02898-y

Navigation