Skip to main content
Log in

Influence Mechanism of F on the Structure and Properties of Aluminate-Based Mold Flux

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The spectral experiment, hemispherical melting point apparatus, rotating cylinder method, and four-probe method were conducted to measure the structure, melting temperature, viscosity, and electrical conductivity of aluminate slag. The results show that with F content increase from 2 to 10 wt pct, the hemispherical melting point depresses, and the structure depolymerizes, leading to reduce of viscosity and augment of electrical conductivity. With further increase of F content from 10 to 14 wt pct, both the hemispherical melting point and the network structure associated with Si and B polymerization turn upward, so the viscosity enhances. However, the electrical conductivity continuously augments due to the diluent effect of CaF2, that the loose CaF2 cluster structure is facilitated. Meanwhile, with the addition of F within 10 wt pct, the crystalline phase changes from BaAl2O4 to Ca12Al14O33 and the intensity of the Bragg diffraction peak decreases, resulting in a decline in the breaking temperature (Tbr) of apparent viscosity–temperature curve. When the F content exceeds 10 wt pct, the crystalline phase transforms into CaF2 and the intensity of the crystal peak is heightened, making Tbr enhance. Moreover, the apparent crystallization ratio also decreases and then increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.C. Mills and A.B. Fox: ISIJ Int., 2003, vol. 43, pp. 1479–86.

    Article  CAS  Google Scholar 

  2. H.S. Park, H. Kim, and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 324–30.

    Article  Google Scholar 

  3. H. Kim and I. Sohn: ISIJ Int., 2011, vol. 51, pp. 1–8.

    Article  CAS  Google Scholar 

  4. G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1218–223.

    Article  Google Scholar 

  5. M.K. Oh, T.S. Kim, and J.H. Park: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 3028–38.

    Article  Google Scholar 

  6. G.H. Kim and I. Sohn: J. Am. Ceram. Soc., 2019, vol. 102, pp. 6575–90.

    Article  CAS  Google Scholar 

  7. G.H. Kim and I. Sohn: J. Mater. Res. Technol., 2022, vol. 20, pp. 2335–47.

    Article  CAS  Google Scholar 

  8. S. Lee and D.J. Min: J. Am. Ceram. Soc., 2017, vol. 100, pp. 2543–52.

    Article  CAS  Google Scholar 

  9. X. Zhang, C. Liu, and M. Jiang: ISIJ Int., 2020, vol. 60, pp. 2176–82.

    Article  CAS  Google Scholar 

  10. S. He, S. Wang, B. Jia, M. Li, Q. Wang, and Q. Wang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1503–13.

    Article  Google Scholar 

  11. Y. Lao, Y. Gao, F. Deng, Q. Wang, and G. Li: Metall. Res. Technol., 2019, vol. 116, p. 638.

    Article  CAS  Google Scholar 

  12. K.J. Schumacher, J.F. White, and J.P. Downey: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 119–24.

    Article  Google Scholar 

  13. Y.H. Lin, L.Q. Zhang, and X.L. Huang: Metall. Res. Technol., 2017, vol. 114, p. 606.

    Article  Google Scholar 

  14. F. Shahbazian: Scand. J. Metall., 2001, vol. 30, pp. 302–08.

    Article  CAS  Google Scholar 

  15. W. Xin, J. Zhang, Y. Deng, Y. Jiang, and P. Wang: Trans. Indian Inst. Met., 2021, vol. 74, pp. 871–79.

    Article  CAS  Google Scholar 

  16. J.H. Park, D.J. Min, and H.S. Song: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 723–29.

    Article  CAS  Google Scholar 

  17. X. Wang, H. Jin, L. Zhu, Y. Xu, and S. Qu: Metals, 2019, vol. 9, p. 871.

    Article  CAS  Google Scholar 

  18. J.S. Choi, T.J. Park, and D.J. Min: J. Am. Ceram. Soc., 2021, vol. 104, pp. 140–56.

    Article  CAS  Google Scholar 

  19. J. Qi, C. Liu, C. Li, and M. Jiang: J. Rare Earths, 2016, vol. 34, pp. 328–35.

    Article  CAS  Google Scholar 

  20. Q. Wang, J.A. Yang, C. Zhang, D.X. Cai, and O. Ostrovski: J. Iron Steel Res. Int., 2019, vol. 26, pp. 374–84.

    CAS  Google Scholar 

  21. J. Yang, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1766–72.

    Article  Google Scholar 

  22. H. Shao, E. Gao, W. Wang, and L. Zhang: J. Am. Ceram. Soc., 2019, vol. 102, pp. 4440–49.

    Article  CAS  Google Scholar 

  23. X. Zhang, C. Liu, and M. Jiang: J. Northeast. Univ. (Nat. Sci.), 2020, vol. 41, pp. 510–15.

    Google Scholar 

  24. G. Fan, S. He, T. Wu, and Q. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2005–13.

    Article  Google Scholar 

  25. T. Wu, Q. Wang, S. He, J. Xu, X. Long, and Y. Lu: Steel Res. Int., 2012, vol. 83, pp. 1194–02.

    Article  CAS  Google Scholar 

  26. X. Yu, G. Wen, P. Tang, and H. Wang: Chin. J. Process. Eng., 2010, vol. 10, pp. 1153–57.

    CAS  Google Scholar 

  27. W. Yan, W. Chen, Y. Yang, and A. McLean: Ironmak. Steelmak., 2019, vol. 46, pp. 347–52.

    Article  CAS  Google Scholar 

  28. W. Yan, A. McLean, Y. Yang, W. Chen and M. Barati: Evaluation of mold flux for continuous casting of high-aluminum steel, Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, Springer. 2016, pp. 279–89.

  29. K.W. Peng, P. Zhang, J.G. Xie and H.L. Ma: Study on properties of Al2O3-CaO-SiO2-CaF2 slag system. Advanced Materials Research, Switzerland, 2012, Trans Tech Publ, pp. 269-272.

  30. B. Lu and W. Wang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 852–62.

    Article  Google Scholar 

  31. W. Yan, W. Chen, Y. Yang, C. Lippold, and A. McLean: Ironmak. Steelmak., 2016, vol. 43, pp. 316–23.

    Article  CAS  Google Scholar 

  32. L. Fan, C. Liu, and M. Jiang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1295–07.

    Article  Google Scholar 

  33. C. Zhang, Y. Kong, T. Wu, G. Bao, J. Lei, and H. Wang: Metall. Res. Technol., 2022, vol. 119, p. 507.

    Article  CAS  Google Scholar 

  34. Y. Sasaki, M. Iguchi, and M. Hino: ISIJ Int., 2007, vol. 47, pp. 346–47.

    Article  CAS  Google Scholar 

  35. H. Singh, Q. Shu, G. King, Z. Liang, Z. Wang, W. Cao, M. Huttula, and T. Fabritius: J. Am. Ceram. Soc., 2021, vol. 104, pp. 4505–17.

    Article  CAS  Google Scholar 

  36. X. Wan, C. Shi, Y. Huang, Q. Shu, and Y. Zhao: Metall. Mater. Trans. B., 2023, vol. 54B, pp. 465–79.

    Article  Google Scholar 

  37. R. El Hayek, F. Ferey, P. Florian, A. Pisch, and D.R. Neuville: Chem. Geol., 2017, vol. 461, pp. 75–81.

    Article  Google Scholar 

  38. C. Zhang, Y. Kong, T. Wu, J. Lei, G. Bao, and H. Wang: J. Mol. Liq., 2022, vol. 368, p. 120738.

    Article  CAS  Google Scholar 

  39. J. Yang, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 291–303.

    Article  Google Scholar 

  40. J. Lei, W. Yang, G.Y. Sheng, C. Zhang, T. Wu, and H.C. Wang: Metall. Mater. Trans. B, 2022, vol. 2022B, pp. 1–9.

    Google Scholar 

  41. G.D. Chryssikos, E.I. Kamitsos, and A.P. Patsis: J. Non-Cryst. Solids, 1996, vol. 202, pp. 222–32.

    Article  CAS  Google Scholar 

  42. L.M. Osipova, A.A. Osipov, and V.N. Bykov: Glass Phys. Chem., 2007, vol. 33, pp. 486–91.

    Article  CAS  Google Scholar 

  43. M. Licheron, V. Montouillout, F. Millot, and D.R. Neuville: J. Non-Cryst. Solids, 2011, vol. 357, pp. 2796–01.

    Article  CAS  Google Scholar 

  44. Y. Wen, Q. Shu, Y. Lin, and T. Fabritius: ISIJ Int., 2023, vol. 63, pp. 1–9.

    Article  CAS  Google Scholar 

  45. J. Li, K. Chou, and Q. Shu: ISIJ Int., 2020, vol. 60, pp. 51–57.

    Article  CAS  Google Scholar 

  46. T.S. Kim and J.H. Park: ISIJ Int., 2014, vol. 54, pp. 2031–38.

    Article  CAS  Google Scholar 

  47. Q. Wang, J. Yang, J. Zhang, O. Ostrovski, C. Zhang, and D. Cai: Steel Res. Int., 2021, vol. 93, p. 2100193.

    Article  Google Scholar 

  48. L. Zhou, H. Wu, W. Wang, H. Luo, and H. Li: Ceram. Int., 2021, vol. 47, pp. 10940–49.

    Article  CAS  Google Scholar 

  49. X. Yan, W. Pan, X. Wang, X. Zhang, and Q. Wang: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2526–35.

    Article  Google Scholar 

  50. G.H. Kim and I. Sohn: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 86–95.

    Article  Google Scholar 

  51. G.H. Zhang, Y.L. Zhen, and K.C. Chou: J. Iron Steel Res. Int., 2016, vol. 23, pp. 633–37.

    Article  Google Scholar 

  52. B. Lu, K. Chen, W. Wang, and B. Jiang: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1496–09.

    Article  Google Scholar 

  53. Z. Du, S. Bao, and D. Zhang: Vacuum Electron., 2009, pp. 56-59.

  54. S. Ding, Z. Fang, C. Wen, Y. Wu, and C. Han: China Manganese Ind., 2017, vol. 35, pp. 103–05.

    Google Scholar 

Download references

Acknowledgments

The authors would like to deeply appreciate the fund support from the Natural Science Foundation of Anhui Provincial Education Department (KJ2021A0358) and the College Students Innovation and Entrepreneurship Training Program (S202210360154).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting Wu or Hai-Chuan Wang.

Ethics declarations

Conflict of interest

A conflict of interest exists whenever an author has a financial or personal relationship with a third party whose interests could be positively or negatively influenced by the article's content. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wu, T., Ren, PF. et al. Influence Mechanism of F on the Structure and Properties of Aluminate-Based Mold Flux. Metall Mater Trans B 54, 2784–2792 (2023). https://doi.org/10.1007/s11663-023-02874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02874-6

Navigation