Skip to main content
Log in

Viscosity and structure of CaO–BaO–SiO2–Al2O3-based mold slags for continuous casting of high titanium steel with different TiO2 absorption

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of TiO2 absorption into two different CaO–BaO–SiO2–Al2O3-based mold slags from the steel plant on the viscosity, melting performance and microstructure of slags was investigated through the measurement of the viscosity–temperature relationship, melting temperature and Raman spectroscopy. The parameter of the number of non-bridging oxygen per tetrahedrally-coordinated atom (NBO/T) was also calculated to explain the microstructure variation of molten slags with different TiO2 absorption. The variation of the actual slag consumption and the depth of the liquid slag in mold was explained through the comparison of the viscosity and the melting temperature of two different slags. The viscosity of mold slags (basicity = 0.6) decreased from 1.1 to 0.68 Pa s with the increase in the TiO2 absorption from 0 to 10%, while that of slags (basicity = 0.7) decreased from 0.76 to 0.56 Pa s with the TiO2 absorption from 0 to 6%. The activation energy of both two groups of slags had the tendency to decrease with the increasing TiO2 absorption. The network structure of both two groups of slags measured by the Raman spectra showed that the fraction of complex structure units (Q1, Q2, Q3 and Al–O–Al) decreased and simple structure units (Al–O and Q0) increased with the increase in TiO2 absorption. NBO/T also increased with the increase in the TiO2 absorption, indicating that the absorption of TiO2 into slags resulted in the destruction of silicate/aluminate structure. Hence, the absorption of TiO2 into the current CaO–BaO–SiO2–Al2O3 mold slags decreased the degree of polymerization of these slags and then led to the decrease of viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.J. Wang, S. Qu, R. Liu, L.G. Zhu, Z.L. Piao, T.C. Di, Y. Wang, Mater. Rep. 35 (2021) No. Z1, 467–472.

    ADS  Google Scholar 

  2. Z. Hao, W. Chen, C. Lippold, Metall. Mater. Trans. B 41 (2010) 805–812.

    Article  Google Scholar 

  3. Z. Wang, Q.F. Shu, X.M. Hou, K.C. Chou, Ironmak. Steelmak. 39 (2012) 210–215.

    Article  CAS  Google Scholar 

  4. L. Zhou, Z. Pan, W. Wang, J. Chen, L. Xue, T. Zhang, L. Zhang, Metall. Mater. Trans. B 51 (2020) 85–94.

    Article  CAS  Google Scholar 

  5. Z. Wang, Q. Shu, K. Chou, Metall. Mater. Trans. B 44 (2013) 606–613.

    Article  CAS  Google Scholar 

  6. T. Mukongo, P.C. Pistorius, A.M. Garbers-Craig, Ironmak. Steelmak. 31 (2004) 135–143.

    Article  CAS  Google Scholar 

  7. J.L. Liao, J. Li, X.D. Wang, Z.T. Zhang, Ironmak. Steelmak. 39 (2012) 133–139.

    Article  CAS  Google Scholar 

  8. H. Park, J.Y. Park, G.H. Kim, I. Sohn, Steel Res. Int. 83 (2012) 150–156.

    Article  CAS  Google Scholar 

  9. Z. Piao, L. Zhu, X. Wang, Z. Liu, B. Wang, P. Xiao, Z. Yuan, Metall. Mater. Trans. B 51 (2020) 2119–2130.

    Article  CAS  Google Scholar 

  10. Z. Piao, Research on exploitation and metallurgical properties of CaO-Al2O3-TiO2-based mold flux for high titanium steel, University of Science and Technology Beijing, Beijing, China, 2021.

    Google Scholar 

  11. Z. Wang, Q. Shu, K. Chou, High Temp. Mater. Process. 32 (2013) 265–273.

    Article  CAS  Google Scholar 

  12. J.L. Li, Q.F. Shu, K.C. Chou, Can. Metall. Quart. 54 (2015) 85–91.

    Article  CAS  Google Scholar 

  13. J.T. Ju, G.H. Ji, J.L. An, C.M. Tang, Ironmak. Steelmak. 48 (2021) 109–115.

    Article  CAS  Google Scholar 

  14. Z. Li, Research on reactivity control and basic structure properties of mold flux for high-Mn high-Al steel, Chongqing University, Chongqing, China, 2019.

    Google Scholar 

  15. L. Zhu, Q. Wang, Q. Wang, S. Zhang, S. He, Ironmak. Steelmak. 46 (2019) 865–871.

    Article  CAS  Google Scholar 

  16. L.L. Zhu, Q. Wang, Q.Q. Wang, S.D. Zhang, Ironmak. Steelmak. 46 (2019) 865–871.

    Article  CAS  Google Scholar 

  17. G. Urbain, Y. Bottinga, P. Richet, Geochim. Cosmochim. Acta 46 (1982) 1061–1072.

    Article  ADS  CAS  Google Scholar 

  18. P. McMillan, B. Piriou, A. Navrotsky, Geochim. Cosmochim. Acta 46 (1982) 2021–2037.

    Article  ADS  CAS  Google Scholar 

  19. E. Gao, W. Wang, L. Zhang, J. Non Cryst. Solids 473 (2017) 79–86.

    Article  ADS  CAS  Google Scholar 

  20. Y. Sun, H. Wang, Z. Zhang, Metall. Mater. Trans. B 49 (2018) 677–687.

    Article  CAS  Google Scholar 

  21. I. Daniel, P. Gillet, B.T. Poe, P.F. McMillan, Phys. Chem. Miner. 22 (1995) 74–86.

    Article  ADS  CAS  Google Scholar 

  22. B.O. Mysen, D. Virgo, C.M. Scarfe, Am. Mineralogist 65(1980) 690–710.

    CAS  Google Scholar 

  23. D.L. Zheng, C.B. Shi, Z.J. Li, J. Li, J.W. Cho, J. Iron Steel Res. Int. 27 (2020) 33–41.

    Article  CAS  Google Scholar 

  24. B. Mysen, D. Neuville, Geochim. Cosmochim. Acta 59 (1995) 325–342.

    Article  ADS  CAS  Google Scholar 

  25. B. Mysen, F. Ryerson, D. Virgo. Am. Mineralogist 65 (1980) 1150–1165.

    CAS  Google Scholar 

  26. Z. Yan, X. Lv, Z. Pang, X. Lv, C. Bai, Metall. Mater. Trans. B 49 (2018) 1322–1330.

    Article  CAS  Google Scholar 

  27. L. Zhou, H. Li, W. Wang, D. Xiao, L. Zhang, J. Yu, Metall. Mater. Trans. B 49 (2018) 2232–2240.

    Article  CAS  Google Scholar 

  28. D. Liang, Z. Yan, X. Lv, J. Zhang, C. Bai, Metall. Mater. Trans. B 48 (2017) 573–581.

    Article  CAS  Google Scholar 

  29. J. Ji, Y. Cui, S. Wang, S. He, Q. Wang, X. Zhang, Ceram. Int. 48 (2022) 256–265.

    Article  CAS  Google Scholar 

  30. Z.J. Wang, Q.F. Shu, S. Sridhar, M. Zhang, Metall. Mater. Trans. B 46 (2015) 758–765.

    Article  CAS  Google Scholar 

  31. B. Mysen, L. Finger, V. David, F. Seifert. Am. Mineralogist 67(1982) 686–695.

    ADS  CAS  Google Scholar 

  32. B.O. Mysen, D. Virgo, F.A. Seifert, Rev. Geophys. 20 (1982) 353–383.

    Article  ADS  CAS  Google Scholar 

  33. L.G. Hwa, S.L. Hwang, L.C. Liu, J. Non-Cryst. Solids 238 (1998) 193–197.

    Article  ADS  CAS  Google Scholar 

  34. J. Li, Y. Sun, Z. Li, Z. Zhang, ISIJ Int. 56 (2016) 752–758.

    Article  CAS  Google Scholar 

  35. R. Akagi, N. Ohtori, N. Umesaki, J. Non-Cryst. Solids 293–295 (2001) 471–476.

    Google Scholar 

  36. J. Tan, S. Zhao, W. Wang, G. Davies, X. Mo, Mater. Sci. Eng. B 106 (2004) 295–299.

    Article  Google Scholar 

  37. B. Mysen, J. Frantz, Contrib. Mineral. Petrol. 117 (1994) 1–14.

    Article  ADS  CAS  Google Scholar 

  38. Z. Wang, Q. Shu, K. Chou, ISIJ Int. 51 (2011) 1021–1027.

    Article  CAS  Google Scholar 

  39. K.C. Mills, ISIJ Int. 33 (1993) 148–155.

    Article  CAS  Google Scholar 

  40. X. Yan, W. Pan, X. Wang, X. Zhang, S. He, Q. Wang, Metall. Mater. Trans. B 52 (2021) 2526–2535.

    Article  CAS  Google Scholar 

  41. Y. Sasaki, M. Iguchi, M. Hino, ISIJ Int. 47 (2007) 638–642.

    Article  CAS  Google Scholar 

  42. D.L. Zheng, G.J. Ma, X. Zhang, M.K. Liu, J. Xu, J. Iron Steel Res. Int. 30 (2023) 717–725.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for support from the National Natural Science Foundation China (Grant Nos. 52274317, 52074054, and 52004045), the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJXY-020), and College of Materials Science and Engineering at Chongqing University, China, and the Henan Tongyu Metallurgy Materials Group Co. Ltd., Xixia, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-bin Zhang.

Ethics declarations

Conflict of interest

All authors declare that there are no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Yt., Wang, Xy., Zhang, Xb. et al. Viscosity and structure of CaO–BaO–SiO2–Al2O3-based mold slags for continuous casting of high titanium steel with different TiO2 absorption. J. Iron Steel Res. Int. (2024). https://doi.org/10.1007/s42243-024-01176-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42243-024-01176-8

Keywords

Navigation