Skip to main content
Log in

Thermodynamic Activity of B2O3 in CaO–SiO2–Al2O3–B2O3–MnO–MgO Molten Slags at 1723 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study aimed to investigate the thermodynamic characteristics of the reaction between Al and B2O3 in the continuous casting process of high-aluminum steel. The activity coefficient of B2O3 in molten slag of (31.1 to 58.4) pct CaO–(0.2 to 16.7) pct SiO2–(14.7 to 49.2) pct Al2O3–(0 to 30.3) pct B2O3–(0 to 10.5) pct CaF2–(2.1 to 4.7) pct MgO–(0 to 1.8) pct MnO slags was measured at 1450°C using B equilibrium experiments between liquid copper and molten slag in a graphite crucible under the mixed gas atmosphere of CO and Ar. The effects of B2O3, Al2O3, SiO2, and CaF2 and the basicity (B = mass pct CaO/(mass pct SiO2+mass pct Al2O3) on the activity coefficient of B2O3 in molten slag were discussed. Regression analysis was used to investigate the quadratic relationship between the activity coefficient of B2O3 and the concentrations of components in the slag. The results indicated that (a) the activity coefficient of B2O3 increased with an increase in B2O3 when B2O3 > 7 pct and B < 1, but decreased when B2O3 > 7 pct and B > 1. (b) When B > 0.9 and Al2O3 > 26 pct, the activity coefficient of B2O3 went up with the increase of Al2O3, but decreased when B < 0.9. (c) When B = 0.93 to 0.97, B2O3 = 9.1 to 9.5 pct, and CaF2 < 11 pct, the activity coefficient of B2O3 decreased with an increase in CaF2. (d) When B = 0.8 to 1.3, the activity coefficient of B2O3 increased with the increase of the basicity B. These findings provide insight into the factors affecting the activity coefficient of B2O3 in the molten slag and contribute to the optimization of the continuous casting process of high-aluminum steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Zhou and W. Wang: Metall. Mater. Trans. E, 2016, vol. 3E, pp. 139–44.

    Google Scholar 

  2. J.-Y. Park, G.H. Kim, J.B. Kim, S. Park, and I. Sohn: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2582–94.

    Article  Google Scholar 

  3. L. Zhang, W.-L. Wang, and H.-Q. Shao: J. Iron Steel Res. Int., 2019, vol. 26, pp. 336–44.

    Article  CAS  Google Scholar 

  4. Z. Wang and I. Sohn: ISIJ Int., 2020, vol. 60, pp. 2705–16.

    Article  CAS  Google Scholar 

  5. M.-S. Kim, M.-S. Park, and Y.-B. Kang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2077–82.

    Article  Google Scholar 

  6. M. Ueno and T. Inoue: Trans. ISIJ, 1973, vol. 13, pp. 211–17.

    Google Scholar 

  7. L. Qi, A.-M. Zhao, and Z.-Z. Zhao: Adv. Mater. Res., 2011, vol. 233–235, pp. 1063–66.

    Article  Google Scholar 

  8. J. Takahashi, K. Ishikawa, K. Kawakami, M. Fujioka, and N. Kubota: Acta Mater., 2017, vol. 133, pp. 41–54.

    Article  CAS  Google Scholar 

  9. N. Dudova, R. Mishnev, and R. Kaibyshev: ISIJ Int., 2011, vol. 51(11), pp. 1912–18.

    Article  CAS  Google Scholar 

  10. A.A. Azarkevich, L.V. Kovalenko, and V.M. Krasnopoiskii: Met. Sci. Heat Treat., 1995, vol. 37, pp. 22–24.

    Article  Google Scholar 

  11. T. Kasuya and Y. Hashiba: Sci. Technol. Weld. Join., 1999, vol. 4(5), pp. 265–75.

    Article  CAS  Google Scholar 

  12. T. Kamo, M. Hamada, and Y. Komizo: Bull. Chem. Soc. Jpn., 2002, vol. 20(2), pp. 276–81.

    CAS  Google Scholar 

  13. Z.-C. Wang, S.-X. Tong, X. Liu, Y. Su, and F. Cao: J. Chem. Thermodyn., 1995, vol. 27, pp. 873–78.

    Article  CAS  Google Scholar 

  14. Z.-C. Wang, Y. Su, and S.-X. Tong: J. Chem. Thermodyn., 1996, vol. 28, pp. 1109–13.

    Article  CAS  Google Scholar 

  15. Z.-Q. Huang, Z.-P. Yang, Y. Su, S.-X. Tong, and Z.-C. Wang: J. Chem. Thermodyn., 1995, vol. 27, pp. 1429–32.

    Article  CAS  Google Scholar 

  16. A.S. Sunkar and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1649–55.

    Article  CAS  Google Scholar 

  17. X. Huang, T. Fujisawa, and C. Yamauch: ISIJ Int., 1996, vol. 36, pp. 133–37.

    Article  CAS  Google Scholar 

  18. X.-M. Huang, K. Asano, T. Fujisawa, Z. Sui, and C. Yamauch: ISIJ Int., 1996, vol. 36, pp. 1360–65.

    Article  CAS  Google Scholar 

  19. M. Sakamoto, Y. Yanaba, H. Yamamura, and K. Morita: ISIJ Int., 2013, vol. 53, pp. 1143–51.

    Article  CAS  Google Scholar 

  20. L.A.V. Teixeira, Y. Tokuda, T. Yoko. and K. Morita: ISIJ Int., 2009, vol. 49, pp. 777–82.

  21. I.Y. Archakov, V.L. Stolyarova, and M.M. Shultz: Rapid Commun. Mass Spectrom., 1998, vol. 12, pp. 1330–34.

    Article  CAS  Google Scholar 

  22. I.A. Sobolev, F.A. Lifanov, S.V. Stefanovskii, S.A. Dmitriev, V.N. Zakharenko, and A.P. Kobelev: Glass Ceram., 1987, vol. 44, pp. 51–54.

    Article  Google Scholar 

  23. H. van Limpt, R. Beerkens, and S. Cook: Eur. J. Glass Sci. Technol., 2011, vol. 52(3), pp. 77–87.

    Google Scholar 

  24. J.-B. Chen, W.-B. Pan, H.-H. Huang, Z.-Y. Chen, M.-H. Zhao, and Y.-Q. Sun: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1526–37.

    Article  Google Scholar 

  25. J.-B. Chen, H.-Z. Luan, H.-H. Huang, M.-H. Zhao, W.-B. Pan, and Z.-Y. Chen: ISIJ Int., 2022, vol. 62, pp. 1341–51.

    Article  CAS  Google Scholar 

  26. J.-B. Chen, H.-H. Huang, R. Chu, and Y.-Q. Sun: ISIJ Int., 2021, vol. 61, pp. 1842–49.

    Article  CAS  Google Scholar 

  27. E.T. Turkdogan: Physical Chemistry of High Temperature Technology, Academic Press, New York, 1980.

    Google Scholar 

  28. K.T. Jacob, S. Priya, and Y. Waseda: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2674–78.

    Article  CAS  Google Scholar 

  29. J. Yang, J.-Q. Zhang, O. Ostrovski, C. Zhang, and D.-X. Cai: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 291–303.

    Article  Google Scholar 

  30. K. Liu, Y.-H. Han, Z.-F. Yuan, L.-G. Zhu, and X.-T. Yu: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1504–15.

    Article  Google Scholar 

  31. J. Yang, Q. Wang, J.-Q. Zhang, O. Ostrovski, C. Zhang, and D.-X. Cai: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2794–803.

    Article  Google Scholar 

  32. G.-H. Kim and I. Sohn: J. Am. Ceram. Soc., 2019, vol. 102, pp. 6575–90.

    Article  CAS  Google Scholar 

  33. M. Kowalski, P.J. Spencer, and D. Neuschütz: Slag Atlas, 2nd ed., Verlag Stahleisen GmbH, Düsseldorf, 1995.

    Google Scholar 

  34. G.K. Sigworth and J.F. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the funding support by National Natural Science Foundation of China (No. 51874198).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-bin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Jb., Che, Hj., Zhao, Mh. et al. Thermodynamic Activity of B2O3 in CaO–SiO2–Al2O3–B2O3–MnO–MgO Molten Slags at 1723 K. Metall Mater Trans B 54, 2737–2746 (2023). https://doi.org/10.1007/s11663-023-02870-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02870-w

Navigation