Skip to main content
Log in

Effect of Boron on the Formation of the Naturally Deposited Film and Its Corresponding Interfacial Heat Transfer Behavior in Strip Casting of Boron-Containing Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, a droplet solidification technique was used to simulate the process of sub-rapid solidification and film deposition phenomenon in strip casting of boron-containing steel, and studied the effect of boron on the formation of the naturally deposited film and its corresponding interfacial heat transfer behavior. The results indicated that boron modified the surface tension of molten steel, thus increasing the interfacial wettability between the molten steel and substrate surface with the final contact angle decreasing from 102 to 89 deg, and improving the related heat transfer with maximum heat flux increasing from 6.23 to 9.11 MW/m2. The deposited film was mainly composed of elements O, Fe, Si, Mn, B, and Cr. The increasing boron content made the deposited film particles melt faster and fuse more easily. Furthermore, the deposited films of the experiments with high boron content were thicker under the same deposition times; meanwhile, with the increase of boron content, the surface roughness of the deposited film increased gradually. In addition, the interfacial heat transfer behavior was mainly related to interfacial wettability and deposited film. Also, the deposited film composed of uniformly distributed small particles was better than tiny floccule or large clusters, and the relatively good film thickness was about 3.3–4.0 μm

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Ueno and T. Inoue: Trans. Iron Steel Inst. Jpn., 1973, vol. 13, pp. 210–17.

    Article  CAS  Google Scholar 

  2. G.F. Melloy, P.R. Summon, and P.P. Podgursky: Metall. Trans., 1973, vol. 4, pp. 2279–89.

    Article  CAS  Google Scholar 

  3. S. Yin, A. Rong, and M. Tanino: J. Iron Steel Res. Int., 2013, vol. 20, pp. 99–104.

    Article  Google Scholar 

  4. N.E. Hannerz: Trans. Iron Steel Inst. Jpn.n, 1985, vol. 25, pp. 149–58.

    Article  CAS  Google Scholar 

  5. S. Song, A. Guo, and D. Shen: Mater. Sci. Eng. A, 2003, vol. 360, pp. 96–100.

    Article  Google Scholar 

  6. E.L. Chipres, I. Mejia, C. Maldonado, A.B. Jacuinde, and J. Cabrera: Mater. Sci. Eng. A, 2007, vol. 460, pp. 460–64.

    Google Scholar 

  7. L.H. Chown and L.A. Cornish: Mater. Sci. Eng. A, 2008, vol. 494, pp. 263–75.

    Article  Google Scholar 

  8. L. Karlsson: Acta Mater., 1988, vol. 36, pp. 1–2.

    Article  CAS  Google Scholar 

  9. J.H. Lim, J.S. Kim, and B.H. Park: Korean J. Mater. Res., 2011, vol. 21, pp. 303–8.

    CAS  Google Scholar 

  10. Y. Chen, Y. Bao, M. Wang, X. Cai, L. Wang, and L. Zhao: ISIJ Int., 2014, vol. 54, pp. 2215–20.

    Article  CAS  Google Scholar 

  11. P.G.Q. Netto, R.P. Tavares, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2001, vol. 41, pp. 1340–49.

    Article  CAS  Google Scholar 

  12. S. Xu, S. Li, S. Wang, J. Gao, R. Cao, Q. Feng, H. Li, and X. Mao: J. Iron Steel Res. Int., 2022, vol. 29, pp. 17–33.

    Article  Google Scholar 

  13. R. An, B. Yu, R. Li, and M. Wei: Appl. Energy., 2018, vol. 226, pp. 862–80.

    Article  Google Scholar 

  14. K.C. Mills, A.B. Fox, Z. Li, and R.P. Thackray: Ironmak. Steelmak., 2005, vol. 32, pp. 26–34.

    Article  CAS  Google Scholar 

  15. A.R. Büchner: Steel Res. Int., 2004, vol. 75, pp. 5–12.

    Article  Google Scholar 

  16. D.K. Choo, H.K. Moon, T. Kang, and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2249–58.

    Article  Google Scholar 

  17. I. Korobeinikov, D. Chebykin, S. Seetharaman, and O. Volkova: Int. J. Thermophys., 2021, vol. 42, pp. 1–2.

    Article  Google Scholar 

  18. N. Phinichka: Doctoral Thesis, Carnegie Mellon University, 2001.

  19. P. Nolli and A.W. Cramb: Metall. Mater. Trans. B, 2008, vol. 39, pp. 56–65.

    Article  Google Scholar 

  20. C. Zhu, W. Wang, J. Zeng, C. Lu, L. Zhou, and J. Chang: ISIJ Int., 2019, vol. 59, pp. 880–88.

    Article  CAS  Google Scholar 

  21. H. Xu, W. Wang, C. Lu, P. Lyu, and C. Zhu: J. Mater. Res. Technol., 2021, vol. 15, pp. 524–30.

    Article  CAS  Google Scholar 

  22. W. Wang, D. Cai, C. Lu, P. Lyu, C. Zhu, and J. Zeng: Metall. Mater. Trans. B, 2022, vol. 53, pp. 198–07.

    Article  CAS  Google Scholar 

  23. H.U. Lindenberg, G. Brückner, and K.H. Tacke: Steel Res. Int., 2001, vol. 72, pp. 490–95.

    Article  CAS  Google Scholar 

  24. S. Ge, M. Isac, and R.I.L. Guthrie: ISIJ Int., 2012, vol. 52, pp. 2109–22.

    Article  CAS  Google Scholar 

  25. W. Dou, G. Yuan, M. Lan, Y. Zhang, and M. Zhou: Steel Res. Int., 2020, vol. 91, p. 15.

    Article  Google Scholar 

  26. M. Daamen, O. Güvenç, M. Bambach, and G. Hirt: CIRP Ann-Manuf. Techn., 2014, vol. 63, pp. 265–68.

    Article  Google Scholar 

  27. C. Zhu, J. Zeng, and W. Wang: Sci. China Technol. Sci., 2022, vol. 5, pp. 493–18.

    Article  Google Scholar 

  28. C. Zhu, W. Wang, and C. Lu: J. Alloys Compd., 2019, vol. 770, pp. 631–39.

    Article  CAS  Google Scholar 

  29. W. Wang, C. Zhu, J. Zeng, C. Lu, P. Lyu, H. Qian, and H. Xu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 45–53.

    Article  Google Scholar 

  30. W. Wang, C. Zhu, C. Lu, J. Yu, and L. Zhou: Metall. Mater. Trans. A, 2018, vol. 49, pp. 5524–34.

    Article  CAS  Google Scholar 

  31. W. Wang, C. Zhu, J. Zeng, C. Lu, H. Qian, H. Xu, and P. Lyu: Metall. Mater. Trans. A, 2020, vol. 51, pp. 2306–17.

    Article  CAS  Google Scholar 

  32. C. Zhu, W. Wang, and C. Lu: J. Sustain. Metall., 2019, vol. 5, pp. 378–90.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (52204356, 52274342, 52130408), National Science Fund for Overseas Excellent Young Scholars (21FAA01748), and Hunan Scientific Technology Projects (2019RS3007, 2020WK2003) is greatly acknowledged.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenyang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Hao, L., Lu, C. et al. Effect of Boron on the Formation of the Naturally Deposited Film and Its Corresponding Interfacial Heat Transfer Behavior in Strip Casting of Boron-Containing Steel. Metall Mater Trans B 54, 2712–2722 (2023). https://doi.org/10.1007/s11663-023-02868-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02868-4

Navigation