Skip to main content

Advertisement

Log in

Avrami Model for the Description of Nucleation and Growth of Tellurium During Cementation by Copper in the Sulfate Media

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Tellurium (Te) cementation is one of the popular methods which Cu2Te has been known the major product, and homogenous models were defined as the kinetic mechanism of the reaction. However, observations dose not confirm this mechanism, for there is a stopping time at the beginning of the process, and then reaction rate increase significantly. Thus, the present work has investigated the Te cementation mechanism by copper chops in the sulfate medial, and the influence of H2SO4, CuSO4, Te concentration, Temperature, copper chops size and ratio were studied. The Avrami model, based on the nucleation and growth of copper telluride phase, was selected as a desired kinetic mechanism in the process. The exponent number in the Avrami model became 1.25. Besides, the effect of various factors was studied to specify the order of the H2SO4, CuSO4, Te concentration, copper particle size, and solid copper ratio in the cementation rate equation are 1.5675, 0.9643, 0.9755, −0.1455, 0.5288, respectively. Additionally, the apparent activation energy of the reaction is 97.237 kJ mol−1. The SEM images and XRD patterns approve Cu2Te formation by solid copper as Cu2Te sediments are distributed in the microstructure. Therefore, the initial embryo of copper telluride was form in the solution and is grown via the Avrami model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P.D. Pol, C.P. Kathari, and S.T. Nandibewoor: Transit. Met. Chem., 2003, vol. 28, pp. 209–16.

    Article  CAS  Google Scholar 

  2. M. Saeedi, N. Sadeghi, and E.K. Alamdari: Min. Metall. Explor., 2021, vol. 38, pp. 2559–68.

    Google Scholar 

  3. B.H. Morrison: in International Symposium on Unit Processes in Hydrometallurgy, Gordon and Breach Science Publishers, New York, 1963, pp 227–49.

  4. G. Qin: Department of Materials Engineering, University of British Columbia, Vancouver, 2005, p. 120.

    Google Scholar 

  5. J.E. Hoffmann: JOM, 1989, vol. 41, pp. 33–38.

    Article  CAS  Google Scholar 

  6. S. Hosseinipour, E.K. Alamdari, and N. Sadeghi: Metals, 2022, vol. 12, p. 1851.

    Article  CAS  Google Scholar 

  7. M.R. Chowdhury and S.K. Sanyal: Hydrometallurgy, 1993, vol. 32, pp. 189–200.

    Article  CAS  Google Scholar 

  8. F. Mahmoudiani, S.A. Milani, F. Hormozi, and A. Yadollahi: J. Iran. Chem. Soc., 2022, vol. 19, pp. 1–8.

    Article  Google Scholar 

  9. A. Sattari, M. Kavousi, and E.K. Alamdari: Trans. Indian Inst. Met., 2017, vol. 70, pp. 1103–09.

    Article  CAS  Google Scholar 

  10. Z. Li, F. Qiu, Q. Tian, X. Yue, and T. Zhang: J. Clean. Prod. 2022, vol. 366, p. 132796.

    Article  CAS  Google Scholar 

  11. X. Guo, Z. Xu, D. Li, Q. Tian, R. Xu, and Z. Zhang: Hydrometallurgy, 2017, vol. 171, pp. 355–61.

    Article  CAS  Google Scholar 

  12. M.A. Topçu, V. Kalem, and A. Kalem: Hydrometallurgy, 2021, vol. 205, p. 105732.

    Article  Google Scholar 

  13. T. Shibasaki, K. Abe, and H. Takeuchi: Hydrometallurgy, 1992, vol. 29, pp. 399–412.

    Article  CAS  Google Scholar 

  14. S. Wang, B. Wesstrom, and J. Fernandez: J. Miner. Mater. Charact. Eng., 2003, vol. 2, pp. 53–64.

    Google Scholar 

  15. R. Hassan and S. Ibrahim: Inorg. Chem. Commun., 2019, vol. 104, pp. 178–85.

    Article  CAS  Google Scholar 

  16. P.H. Jennings, N.J. Themelis, and E.S. Stratigakos: Can. Metall. Q., 1969, vol. 8, pp. 281–86.

    Article  CAS  Google Scholar 

  17. W.A. Dutton and W. Charles Cooper: Chem. Rev., 1966, vol. 66, pp. 657–75.

    Article  CAS  Google Scholar 

  18. U.K. Kläning and K. Sehested: J. Phys. Chem. A, 2001, vol. 105, pp. 6637–45.

    Article  Google Scholar 

  19. R.D. Cannon: Electron Transfer Reactions, 1st ed. Butterworth-Heinemann, New York, 1980.

    Google Scholar 

  20. M. Mokmeli, D. Dreisinger, and B. Wassink: Hydrometallurgy, 2014, vol. 147, pp. 20–29.

    Article  Google Scholar 

  21. M. Mokmeli: Department of Materials Engineering, University of British Columbia, Vancouver, 2014.

    Google Scholar 

  22. S.R. Younesi, H. Alimadadi, E. Keshavarz Alamdari, and S.P.H. Marashi: Hydrometallurgy, 2006, vol. 84, pp. 155–64.

    Article  CAS  Google Scholar 

  23. H. Islas, M.U. Flores, I.A. Reyes, J.C. Juárez, M. Reyes, A.M. Teja, E.G. Palacios, T. Pandiyan, and J. Aguilar-Carrillo: J. Hazard. Mater., 2020, vol. 386, p. 121664.

    Article  CAS  Google Scholar 

  24. M. Rath, E. Povoden-Karadeniz, and E. Kozeschnik: in Superalloys 2016: Proceedings of the 13th International Symposium on Superalloys, Wiley, Hoboken, NJ (TMS: Seven Springs, Pennsylvania, 2016), pp 97–105.

  25. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–12.

    Article  CAS  Google Scholar 

  26. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212–24.

    Article  CAS  Google Scholar 

  27. S.-S. Hubbes, W. Danzl, and P. Foerst: LWT, 2018, vol. 93, pp. 189–96.

    Article  CAS  Google Scholar 

  28. G.P. Demopoulos: Hydrometallurgy, 2009, vol. 96, pp. 199–214.

    Article  CAS  Google Scholar 

  29. K. Utsumi and K. Kawamura: Trans. Jpn Inst. Met., 1980, vol. 21, pp. 269–74.

    Article  CAS  Google Scholar 

  30. C.-H. Tseng and P.-S. Tsai: Polymers, 2022, vol. 14, p. 442.

    Article  CAS  Google Scholar 

  31. G.M. de Oliveira, A.P.B. Ribeiro, A.O. dos Santos, L.P. Cardoso, and T.G. Kieckbusch: LWT Food Sci. Technol., 2015, vol. 63, pp. 1163–70.

    Article  Google Scholar 

  32. D.C. McPhail: Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 851–66.

    CAS  Google Scholar 

  33. F. Faraji, A. Alizadeh, F. Rashchi, and N. Mostoufi: Rev. Chem. Eng., 2022, vol. 38, pp. 113–48.

    Article  CAS  Google Scholar 

  34. D.R. Groot, J.A.N. Van Der Linde, and J.S. Afr: Inst. Min. Metall., 2009, vol. 109, pp. 701–07.

    Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eskandar Keshavarz Alamdari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinipour, S., Alamdari, E.K. & Sadeghi, N. Avrami Model for the Description of Nucleation and Growth of Tellurium During Cementation by Copper in the Sulfate Media. Metall Mater Trans B 54, 2670–2679 (2023). https://doi.org/10.1007/s11663-023-02865-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02865-7

Navigation