Skip to main content
Log in

Numerical and Physical Modeling of Steel Desulfurization on a Modified RH Degasser

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This study presents a new approach for RH degasser for desulfurization purposes. The modified RH has a short down leg length, so the steel flowing through this leg is discharged above the slag–metal interface. Physical and mathematical modeling were carried out and the results show that a large slag dispersion into steel can be achieved, so an efficient desulfurization is expected for this modified reactor. In the physical model as well as in computational fluid dynamics simulations, water or a saline solution were used to mimic the steel similar phase and three kinds of oils to emulate the slag. It was observed that as circulation rate is increased, the emulsification increased too. Additionally, for large phase density difference it was observed that oil dispersion is already intense, but it is concentrated nearby the down leg flow. CFD simulations were applied to RH industrial unit too, and as expected, a large slag entrainment into steel is observed and sustained. The dispersed phase flows nearby the steel jet coming from down leg. Furthermore, this modification on RH does not compromise the main RH functions since no change on circulation rates and mixing times was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Ref. [2]

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

dp:

Droplet diameter (m)

g :

Acceleration of gravity (m/s2)

G :

Gas flow rate (STP L/min)

Q :

Circulation rate (kg/s)

[S]:

Steel sulfur concentration (ppm)

\(v\) :

Volume (m3 or L)

V :

Velocity (m/s)

t :

Time (s)

L S :

Slag–metal sulfur partition coefficient

E :

Specific rate of input of kinetic energy (W/t)

C t :

Instantaneous concentration (kg/m3)

C :

Final concentration (kg/m3)

ρ :

Density (kg/m3)

μ :

Dynamic viscosity (Pa·s)

τ mix . :

Mixing time (s)

ε :

Average rate of dissipation of kinetic energy of turbulence (m2/s3)

κ :

Kinetic energy of turbulence (m2/s2)

σ :

Interfacial tension (N/m)

\(\alpha_{i}\) :

Volume fractions of each phase

g :

Gaseous phase

l :

Liquid phase

o :

Oil

ss:

Saline solution

w :

Water

References

  1. F.N.H. Schrama, E.M. Beunder, B. van den Berg, Y. Yang, and R. Boom: Ironmak. Steelmak., 2017, vol. 44, pp. 333–43.

    Article  CAS  Google Scholar 

  2. A.M.B. Silva, M.A. Oliveira, J.J.M. Peixoto, and C.A. da Silva: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2111–26.

    Article  Google Scholar 

  3. A.M.B. Silva, J.J.M. Peixoto, C.A. da Silva, and I.A. da Silva: REM Int. Eng. J., 2022, vol. 75(1), pp. 27–35.

    Article  Google Scholar 

  4. J.H. Wei, S.J. Zhu, and N.W. Yu: Ironmak. Steelmak., 2000, vol. 27, pp. 129–37.

    Article  CAS  Google Scholar 

  5. Z. Zulhan, Y.A. Patriona, and C. Schrade: SEAISI Q. J., 2013, vol. 42(4), pp. 32–36.

    CAS  Google Scholar 

  6. W.V. Bielefeldt, PhD thesis, Federal University of Rio Grande do Sul/UFRGS, Porto Alegre, 2009.

  7. A. Ghosh: Secondary Steelmaking: Principles and Applications, CRC Press LLC, New York, 2001, pp. 181–217.

    Google Scholar 

  8. P.C. Pistorius and M.K.G. Vermaak: S. Afr. J. Sci., 1999, vol. 95, pp. 377–80.

    CAS  Google Scholar 

  9. P. Riboud and R. Vasse: Rev. Metall., 1985, vol. 82, pp. 801–10.

    Article  CAS  Google Scholar 

  10. C. Schrade, H. Nicolai, and Z. Zulhan: METEC, 2015, vol. 2, pp. 1–5.

    Google Scholar 

  11. J.J.M. Peixoto, W.V. Gabriel, T.S. De Oliveira, C.A. da Silva, I.A. da Silva, and V. Seshadri: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2421–34.

    Article  Google Scholar 

  12. J. Szekely, G. Carlsson, and L. Helle: Ladle Metallurgy, Springer, New York, 1989, pp. 8–22.

    Book  Google Scholar 

  13. H. Yang, S. Yang, J. Li, and J. Zhang: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 995–1001.

    Article  CAS  Google Scholar 

  14. W.X. Dai, G.G. Cheng, G.L. Zhang, Z.D. Huo, Y.L. Qiu, and W.F. Zhu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 611–27.

    Article  Google Scholar 

  15. H. Yang, J. Li, Z. Gao, F. Song, and W. Yang: Mater. Process. Fundam., 2013, pp. 45–52.

  16. P.S.B. Lascosqui: master’s Thesis, Federal University of Ouro Preto/UFOP, Ouro Preto, MG, Brazil, 2006.

  17. M.B. Campos, J.J.M. Peixoto, C.A. da Silva, and I.A. Silva: REM Int. Eng. J., 2020, vol. 73(3), pp. 353–59.

    Article  Google Scholar 

  18. K. Shirabe and J. Szekely: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 465–74.

    Article  CAS  Google Scholar 

  19. Y. Miki, B.G. Thomas, A. Denissov, and Y. Shimada: Steelmak. Conf. Proc., 1997, vol. 24(8), pp. 31–38.

    CAS  Google Scholar 

  20. W. Yang, X. Wang, L. Zhang, Q. Shan, and X. Liu: Steel Res. Int., 2013, vol. 84(5), pp. 473–89.

    Article  CAS  Google Scholar 

  21. M. Wang, J. Guo, X. Li, C. Yao, and Y. Bao: Vacuum, 2021, vol. 185, pp. 1–9.

    Google Scholar 

  22. G. Lee and K. Bertermann: 79th Steelmaking Conf. Proc., Pittsburgh, PA, 1996, vol. 79, pp. 61–65.

  23. W. Bading, C. Lindner, E. Julius, and H. Haubrich: 78th Steelmaking Conf. Proc., Nashville, TN, 1995, vol. 78, pp. 237–41.

  24. S.G.P.T de Abreu, T.A.S. de Oliveira, J.V.G. G. Ananias, G.S. Queiroz, I.A. da Silva, C.A. da Silva and J.J.M. Peixoto: 50th Seminário de Aciaria, Fundiçãoe Metalurgia de Não-Ferrosos, São Paulo SP, 2019, vol. 50, pp. 638–48.

  25. W.V. Gabriel: PhD thesis, Federal University of Ouro Preto/UFOP, Ouro Preto, MG, Brazil, 2020.

  26. K. Yamaguchi, T. Sakuraya, and K. Hamagami: Kawasaki Steel Tech. Rep., 1995, vol. 32, pp. 33–37.

    Google Scholar 

  27. F. Ahrenhold and W. Pluschkell: Steel Res., 1998, vol. 69(2), pp. 54–59.

    Article  CAS  Google Scholar 

  28. X.F. Wang, F.P. Tang, Y. Lin, and C.J. Wu: Ironmak. Steelmak., 2014, vol. 41(9), pp. 694–98.

    Article  CAS  Google Scholar 

  29. S.K. Ajmani, S.K. Dash, S. Chandra, and C. Bhanu: ISIJ Int., 2004, vol. 44, pp. 82–90.

    Article  CAS  Google Scholar 

  30. Y.G. Park, W.C. Doo, K.W. Yi, and S.B. An: ISIJ Int., 2000, vol. 40, pp. 749–55.

    Article  CAS  Google Scholar 

  31. S.P. He, G.J. Chen, and C.J. Guo: Ironmak. Steelmak., 2019, vol. 46, pp. 771–76.

    Article  CAS  Google Scholar 

  32. Ansys Inc.: ANSYS CFX- Solver Theory Guide, Release 18.2, Canonsburg, PA, 2017, pp. 153–269.

  33. L.F. Zhang and F. Li: JOM, 2014, vol. 66, pp. 1227–40.

    Article  CAS  Google Scholar 

  34. K. Zhang, H. Cui, R. Wang, and Y. Liu: Met., 2019, vol. 9, pp. 1–12.

    Google Scholar 

  35. J. Pieprzyca, T. Merder, M. Saternus, and K. Michalek: Arch. Metall. Mater., 2015, vol. 60(3A), pp. 1859–63.

    Article  CAS  Google Scholar 

  36. K. Yoshitomi, M. Nagase, M.A. Uddin, and Y. Kato: ISIJ Int., 2016, vol. 56, pp. 1119–23.

    Article  CAS  Google Scholar 

  37. J.H. Wei, N.M. Yu, Y.Y. Fan, S.L. Yang, J.C. Ma, and D.P. Zhu: J. Shanghai Univ., 2002, vol. 6(2), pp. 167–75.

    Article  Google Scholar 

  38. B. Zhu, Q. Liu, D. Zhao, S. Ren, M. Xu, B. Yang, and B. Hu: Steel Res. Int., 2016, vol. 87(2), pp. 136–45.

    Article  CAS  Google Scholar 

  39. M.I.I.Z. Abidin, A.A.A. Raman, and M.I.M. Nor: Ind. Eng. Chem. Res., 2014, vol. 53(15), pp. 6554–61.

    Article  Google Scholar 

  40. M. Song, Q. Shu, and D. Sichen: Steel Res. Int., 2011, vol. 82, pp. 260–68.

    Article  CAS  Google Scholar 

  41. T.C. Silva, E.F. Rodrigues, C.Soares, C.A. Silva, and I.A. Silva: Proc. 46th Seminário Internacional de Aciaria, ABM, Rio de Janeiro, 2015, pp. 194–204.

  42. P. Sulasalmi, V.V. Visuri, and T. Fabritius: Mater. Sci. Forum, 2013, vol. 762, pp. 242–47.

    Article  Google Scholar 

  43. P. Sulasalmi, V.V. Visuri, A. Kärnä, and T. Fabritius: Steel Res. Int., 2015, vol. 85, pp. 212–22.

    Article  Google Scholar 

  44. Nippon Slag Association, https://www.slg.jp/e/slag/process.html. Accessed 28 Oct 2020.

  45. R.J. Fruehan: The Making, Shaping and Treating of Steel, 11th edn., Steelmaking and Refining Volume, AISE, Pittsburgh, PA, 1998, pp. 664–65.

  46. C.A da Silva, I.A Silva, L.F.A de Castro LFA, R.P. Tavares, V. Seshadri: Termodinâmica Metalúrgica: balanços de energia, soluções e equilíbrio químico em sistemas metalúrgicos, Blucher—ABM, São Paulo, SP, 2018, pp. 83-139.

  47. A.E. Morris, G. Geiger, and H.A. Fine: Handbook on Material and Energy Balance Calculations in Material Processing, Wiley, New York, 2012, pp. 1–2666.

    Google Scholar 

  48. N. El-Kaddah and J. Szekely: Ironmak. Steelmak., 1981, vol. 8, pp. 269–78.

    CAS  Google Scholar 

  49. B. Deo and R. Boom: Fundamentals of Steelmaking Metallurgy, Prentice Hall International, London, 1993, pp. 254–61.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the help provided by UFOP, IFMG, CNPq, CAPES, and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Marlon Barros Silva.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, A.M.B., Peixoto, J.J.M. & da Silva, C.A. Numerical and Physical Modeling of Steel Desulfurization on a Modified RH Degasser. Metall Mater Trans B 54, 2651–2669 (2023). https://doi.org/10.1007/s11663-023-02864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02864-8

Navigation