Skip to main content
Log in

Physical Simulation of Mold Level Fluctuation Characteristics

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Mold level fluctuations have an essential impact on slab quality control. In this study, the wave height and frequency of the fluctuations were analyzed using significant wave height and fast Fourier transform (FFT) in a water model of the mold. The mold flow field distribution was measured by particle image velocimetry (PIV), and the correlation effect between flow field, wave height, and frequency is discussed. The results show that the frequency change of the fluctuations is mainly influenced by the wavelength. The distance between the position of the vortex center and the narrow face of the mold (NF) increases, the travel of the surface liquid mass point increases, and the wavelength of the generated wave becomes longer, resulting in a decrease in frequency. Increasing the surface velocity will promote the overall fluctuations and have a greater impact on the liquid mass point in the fluctuation generating area, thus making the NF amplitude significantly higher. After entering the fluctuation decay area, the amplitude gradually decreases. Waves with frequencies below 0.1 Hz have the largest amplitude variation and are the most important frequency affecting the fluctuation variation. The maximum main frequency may be spontaneously generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.S. Gutierrez-Montiel and R.D. Morales: ISIJ Int., 2013, vol. 53, pp. 230–39.

    Article  CAS  Google Scholar 

  2. S.G. Zheng and M.Y. Zhu: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 704–08.

    Article  CAS  Google Scholar 

  3. H.T. Tsai, H. Yin, M. Lowry, and S. Morales: Iron Steel Technol., 2006, vol. 3(7), pp. 23–31.

    CAS  Google Scholar 

  4. G. Li, C.X. Lu, M.J. Gan, Q.Q. Wang, and S.P. He: Metall. Mater. Trans. B, 2022, vol. 53, pp. 1436–45.

    Article  CAS  Google Scholar 

  5. Y.B. Liu, J. Yang, and Z.Q. Lin: Metall. Mater. Trans. B, 2022, vol. 53, pp. 2030–50.

    Article  CAS  Google Scholar 

  6. V.I. Odinokov, E.A. Dmitriev, and A.I. Evstigneev: Mater. Today, 2019, vol. 19, pp. 2274–77.

    Article  Google Scholar 

  7. P.S. Srinivas, D.K. Mishra, A.B. Kulkarni, R. Gupta, J.M. Korath, and A.K. Jana: Can. Metall. Quart., 2020, vol. 59, pp. 211–32.

    Article  CAS  Google Scholar 

  8. M.J. Gan, W.J. Pan, Q.Q. Wang, X.B. Zhang, and S.P. He: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2862–70.

    Article  Google Scholar 

  9. M.T. Xuan and M. Chen: Steel Res Int., 2022, vol. 93, p. 2100848.

    Article  CAS  Google Scholar 

  10. Y.B. Yin, J.M. Zhang, B. Wang, and Q.P. Dong: Ironmak Steelmak., 2019, vol. 46, pp. 682–91.

    Article  CAS  Google Scholar 

  11. H.C. Zhou, L.F. Zhang, Q.Y. Zhou, W. Chen, R.B. Jiang, K. Yin, and W. Yang: Steel Res. Int., 2021, vol. 92, p. 2000547.

    Article  CAS  Google Scholar 

  12. Y. Wang, Q. Fang, H. Zhang, J.N. Zhou, C.S. Liu, and H.W. Ni: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1088–100.

    Article  Google Scholar 

  13. M.A. Tayfun: J. Waterw. Port Coast., 1990, vol. 116, pp. 686–707.

    Article  Google Scholar 

  14. M.T. Xuan and M. Chen: Metals, 2021, vol. 11, p. 1223.

    Article  Google Scholar 

  15. B.Z. Shen, H.F. Shen, and B.C. Liu: Ironmak. Steelmak., 2009, vol. 36, pp. 33–8.

    Article  CAS  Google Scholar 

  16. H.F. Shen, B.Z. Shen, and B.C. Liu: Steel Res. Int., 2007, vol. 78, pp. 531–35.

    Article  CAS  Google Scholar 

  17. T. Teshima, J. Kubota, M. Suzuki, K. Ozawa, T. Masaoka, and S. Miyahara: Tetsu-to-Hagané, 1993, vol. 79, pp. 576–82.

    Article  CAS  Google Scholar 

  18. K.T. Zhang, J.H. Liu, H. Cui, and C. Xiao: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1174–84.

    Article  CAS  Google Scholar 

  19. R. Miranda, M.A. Barron, J. Barreto, L. Hoyos, and J. Gonzalez: ISIJ Int., 2005, vol. 45, pp. 1626–35.

    Article  CAS  Google Scholar 

  20. Z.K. Jiang, Z.J. Su, C.Q. Xu, J. Chen, and J.C. He: J. Iron Steel Res. Int., 2020, vol. 27, pp. 160–68.

    Article  CAS  Google Scholar 

  21. R.P. do A. Pereira, G.M. de Almeida, J.L.F. Salles, M.A. de S.L. Cuadros, C.T. Valadão, R.O. de Freitas, and T. Bastos-Filho: Metals, 2021, vol. 11, p. 1458.

  22. Y. Li, A.Y. Deng, L.T. Zhang, B. Yang, and E.G. Wang: J. Mater. Process. Tech., 2021, vol. 298, p. 117278.

    Article  Google Scholar 

  23. C.J. Hua, M. Wang, D. Senk, H. Wang, Q. Zhang, J.G. Zhi, and Y.P. Bao: Metals, 2021, vol. 11, p. 662.

    Article  CAS  Google Scholar 

  24. P.D. Komar and M.K. Gaughan: Coast Eng., 1972, pp. 405–18.

  25. T. Zhang, J. Yang, G. Xu, H. Liu, J. Zhou, and W. Qin: Int. J. Miner. Met. Mater., 2021, vol. 28, pp. 238–48.

    Article  CAS  Google Scholar 

  26. X.B. Zhang, Q.Q. Wang, W. Yang, S.D. Wang, and L.F. Zhang: Metall. Mater. Trans. B, 2018, vol. 49, pp. 2533–49.

    Article  CAS  Google Scholar 

  27. H.Y. Duan, X.D. Wang, M. Yao, Y. Liu, and Y. Yu: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 1656–67.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of this work from the National Natural Science Foundation of China (Grant No. U1860106).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shan, Q., Gao, Y. et al. Physical Simulation of Mold Level Fluctuation Characteristics. Metall Mater Trans B 54, 2591–2604 (2023). https://doi.org/10.1007/s11663-023-02860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02860-y

Navigation