Skip to main content
Log in

Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \bar{H} \) :

Average wave-amplitude

H rms :

Root-mean-square wave-amplitude

H s :

Significant wave-amplitude, or 1/3 wave-amplitude

Re :

Reynolds number

Fr :

Froude number

v :

Flow velocity

g :

Gravity

L :

Characteristic length

λ :

Characteristic length ratio

w :

Water model

s :

Steel caster

d :

SEN inner diameter

Q :

Flow rate

f(t):

Original wave signal

W f (a, b):

Wavelet transform of original signal

a :

Scale factor

b :

Position factor

φ(x):

Base wavelet transform function

t :

Time

w 0 :

Dimensionless frequency

|d j (k)|:

The wavelet coefficients squares

E j (k):

Wavelet energy

k :

Scale coefficients

j :

Signal length

P j (k):

Relative wavelet energy for each signal node within 1 to k scale

H j :

Wavelet entropy of all nodes

References

  1. R. M. McDavid and B. G. Thomas: Metall. Mater. Trans. B, 1996, vol. 27, pp. 672-685.

    Article  Google Scholar 

  2. M. Suzuki, M. Suzuki and M. Nakada: ISIJ Int., 2001, vol. 41, pp. 670-682.

    Article  Google Scholar 

  3. H. H Zhang and W. L. Wang: Metall. Mater. Trans B, 2016, vol. 47B, pp. 920-931.

    Article  Google Scholar 

  4. F. M. Najjar, B. G. Thomas and D. E. Hershey: Metall Mater Trans B, 1995, vol. 26B, pp. 750-765.

    Google Scholar 

  5. Y. J. Jeon, H. J. Sung and S. Lee: Metall Mater Trans B, 2010, vol. 41B, pp. 121-130.

    Article  Google Scholar 

  6. J. J. M. Pexioto, W. V. Gabriel, L. Q. Ribeiro, C. A. da Silva, I. A. da Silva and V. Seshadri: J. Mater. Proc. Tech., 2016, vol. 233, pp. 89-99.

    Article  Google Scholar 

  7. D. Gupta and A. K. Lahiri: Metall. Mater. Trans. B, 1994, vol. 25, pp. 227-233.

    Article  Google Scholar 

  8. T. Teshima, J. Kubota and M. Suzuki: Tesu-to-Hagane, 1993, vol. 79, pp. 576-582.

    Article  Google Scholar 

  9. G. A. Panaras, A. Theodorakakos and G. Bergeles: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 1117-1126.

    Article  Google Scholar 

  10. Y. S. Gutierrez-Montitel and R. D. Morales: ISIJ Int., 2013, vol. 53, pp. 230-239.

    Article  Google Scholar 

  11. R. Chaudhary, G. G. Lee, B. G. Thomas and S. H. Kim: Metall. Mater. Trans. B, 2008, vol. 39, pp. 870-884.

    Article  Google Scholar 

  12. G. A. de Tolede, J. Ciriza, and J. J. Laraudogoitia: Ironmak. Steelmak., 2003, vol. 30, pp. 140-234.

    Google Scholar 

  13. U. S. Yong, I. W. Bang and J. H. Rhee: ISIJ Int., 2002, vol. 42, pp. 1103-1111.

    Article  Google Scholar 

  14. Y. Ma, F. Y. Wang and C. Peng: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1565-1572.

    Google Scholar 

  15. F. Al-Badour, M. Sunar and L. Cheded: Mech. Syst. Signal. Process., 2011, vol. 25, pp. 2083-101.

    Article  Google Scholar 

  16. H. Zhengyou, G. Shibin and C. Xiaoqin: Elec. Power Energy Syst., 2011, vol. 33, pp. 402-10.

    Article  Google Scholar 

  17. H. Cui, Y. Liu, D.X. Li et al.: Proceedings of the International Congress on the Science and Technology of Steelmaking, Beijing, 2015, p. 633.

  18. O. A. Rosson, S. Blanco, J. Yordanova et al : J. Neurosci. Methods, 2001, vol. 105, pp. 65-75.

    Article  Google Scholar 

  19. J. Yordanova, V. Kolev, O. A. Rosso: J. Neurosci. Methods, 2002, vol. 117, pp. 99-109.

    Article  Google Scholar 

  20. J. Han and F. Dong: I2MTC 2010, Austin, 2010, pp. 760–65.

  21. C. E. Shannon: Bell Sys. Tech. Tech., 1948, vol. 27, pp. 623-659.

    Article  Google Scholar 

Download references

Acknowledgments

National Key Research and Development Program (2017YFB0304905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Cui.

Additional information

Manuscript submitted September 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Liu, J., Cui, H. et al. Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold. Metall Mater Trans B 49, 1174–1184 (2018). https://doi.org/10.1007/s11663-018-1236-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1236-5

Keywords

Navigation