Skip to main content
Log in

Characteristics of Inclusions and Microstructures Around Solidification Hook of Low-Carbon Steel Continuous Casting Slab

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The area around the solidification hook for low-carbon steel continuous casting slab is divided into four zones: zone A (the overflow zone), zone B (the capture zone), zone C (the zone between oscillation marks) and zone D (the oscillation mark zone without hook). The inclusions and microstructures in the zones of A, B, C and D are observed and detected. The results indicate that the inclusions captured by the solidification hook are Al2O3, MnO and MnO + MnS. The number densities of Al2O3, MnO and MnO + MnS in the zone B are all higher than those of the same types of inclusions in the other zones, indicating that the solidification hook have no tendency to just catch a certain type of inclusions. The proportion of the inclusions greater than 5 μm in the zone B is close to 40 pct, and those in the other zones are less than 12 pct, indicating that the solidification hook is easy to capture the inclusions greater than 5 μm. Besides, the grains near the oscillation marks on the zones of A, B and D are mostly with <111>  orientation, while the grains in the zone C are mainly with <101>  orientation and the proportion of the grain boundaries with low angle in the zone C is the largest. Thus, the grain orientations and grain boundary angles are affected by the oscillation marks. There are lots of small grains in the zone B because inclusions can hinder the movement of grain boundaries during grain growth. The temperature marangoni force and buoyancy force are the decisive forces whether the solidification hook can capture the large inclusions or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.E. Ramirez Lopez, K.C. Mills, P.D. Lee, and B. Santillana: Metall. Mater. Trans. B, 2011, vol. 43, pp. 109–22.

    Article  Google Scholar 

  2. T.T. Li, J. Yang, F.X. Huang, K.R. Zhu, and X.W. Pei: Steelmaking, 2021, vol. 37, pp. 44–56.

    Google Scholar 

  3. H. Tomono, W. Kurz, and W. Heinemann: Metall. Mater. Trans. B, 1981, vol. 12, pp. 409–11.

    Article  Google Scholar 

  4. M. Janik, H. Dyja, S. Berski, and G. Banaszek: J. Mater. Process. Technol., 2004, vol. 153–154, pp. 578–82.

    Article  Google Scholar 

  5. J. Sengupta and B.G. Thomas: JOM, 2005, vol. 58, pp. 11–34.

    Google Scholar 

  6. J. Sengupta, B.G. Thomas, H.J. Shin, G.G. Lee, and S.H. Kim: Metall. Mater. Trans. A, 2006, vol. 37, pp. 1597–611.

    Article  Google Scholar 

  7. P.C. Xiao, M.G. Zhao, L.G. Zhu, and S.P. He: Iron Steel, 2019, vol. 54, pp. 49–55.

    CAS  Google Scholar 

  8. P. Wan, L.N. Song, H.B. Li, and Y.J. Ni: J. Iron Steel Res., 2016, vol. 28, pp. 27–34.

    Google Scholar 

  9. J. Sengupta, H.J. Shin, B.G. Thomas, and S.H. Kim: Acta Mater., 2006, vol. 54, pp. 1165–73.

    Article  CAS  Google Scholar 

  10. G.G. Lee, B.G. Thomas, S.H. Kim, H.J. Shin, S.K. Baek, C.H. Choi, D.S. Kim, and S.J. Yu: Acta Mater., 2007, vol. 55, pp. 6705–12.

    Article  CAS  Google Scholar 

  11. X.X. Deng, L.P. Li, X.H. Wang, Y.Q. Chen, X. Ji, and G.S. Zhu: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 531–43.

    Article  CAS  Google Scholar 

  12. X.F. Zhang, L.F. Zhang, H. Wang, S.D. Wang, Q.Q. Wang, and W. Yang: Chin. J. Eng., 2017, vol. 39, pp. 251–58.

    Google Scholar 

  13. X.X. Deng, C.X. Ji, W.L. Dong, L.P. Li, X. Yin, Y.D. Yang, and A. McLean: Ironmaking Steelmaking, 2017, vol. 45, pp. 592–602.

    Article  Google Scholar 

  14. X.B. Zhang, Y. Ren, L.F. Zhang, and W. Yang: Mater. Trans. B, 2018, vol. 49, pp. 3186–99.

    Article  CAS  Google Scholar 

  15. P.C. Xiao, X.Y. Wu, L.G. Zhu, and Z.G. Liu: Metall. Res. Technol., 2018, vol. 116, p. 103.

    Google Scholar 

  16. P.C. Xiao, Z.L. Pu, L.G. Zhu, Z.G. Liu, and M.G. Zhao: Chin. J. Eng., 2018, vol. 40, pp. 1065–74.

    CAS  Google Scholar 

  17. G.G. Lee, H.J. Shin, S.H. Kim, S.K. Kim, W.Y. Choi, and B.G. Thomas: Ironmaking Steelmaking, 2009, vol. 36, pp. 39–49.

    Article  CAS  Google Scholar 

  18. L.P. Li, X.H. Wang, X.X. Deng, and C.X. Li: J. Iron Steel Res. Int., 2015, vol. 22, pp. 1–9.

    Article  Google Scholar 

  19. X.B. Zhang, Y. Ren, and L.F. Zhang: Metall. Mater. Trans. A, 2018, vol. 49, pp. 5469–77.

    Article  CAS  Google Scholar 

  20. Y.T. Kim and K.W. Yi: Met. Mater. Int., 2020, vol. 27, pp. 5346–59.

    Article  Google Scholar 

  21. S.D. Wang, X.B. Zhang, L.F. Zhang, and Q.Q. Wang: Steel Res. Int., 2018, vol. 89, p. 1800263.

    Article  Google Scholar 

  22. S.M. Cho and B.G. Thomas: JOM, 2020, vol. 72, pp. 3610–27.

    Article  CAS  Google Scholar 

  23. K. Mukai and W. Lin: ISIJ, 1994, vol. 80, pp. 35–40.

    Google Scholar 

  24. T. Matsushita, K. Mukai, and M. Zeze: ISIJ Int., 2013, vol. 53, pp. 18–26.

    Article  CAS  Google Scholar 

  25. P. Wan, X.X. Deng, M. Jiang, X.H. Wang, and Y.Q. Ji: Steelmaking, 2015, vol. 50, pp. 24–33.

    Google Scholar 

  26. S.M. Lee, S.J. Kim, Y.B. Kang, and H.G. Lee: ISIJ Int., 2012, vol. 52, pp. 1730–39.

    Article  CAS  Google Scholar 

  27. T. Miyake, M. Morishita, H. Nakata, and M. Kokita: ISIJ Int., 2006, vol. 46, pp. 1817–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by the National Natural Science Foundation of China (U1960202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Yang, J., Li, T. et al. Characteristics of Inclusions and Microstructures Around Solidification Hook of Low-Carbon Steel Continuous Casting Slab. Metall Mater Trans B 54, 2439–2453 (2023). https://doi.org/10.1007/s11663-023-02846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02846-w

Navigation