Skip to main content
Log in

Role of SiO2 upon Weld Metal Inclusion Characteristics in EH36 Shipbuilding Steels Treated by CaF2–SiO2 Fluxes

  • Brief Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

EH36 shipbuilding steel has been submerged arc welded employing CaF2–SiO2 fluxes, and the weld metal inclusion characteristics contingent upon SiO2 content has been examined. As a function of SiO2 content, predominant inclusions change from Si–Mn–Al–(Ti) to Si–Mn oxides. Inclusion number density and volume fraction increase from 6 × 106 to 8 × 106 N/mm3 and 8.5 × 10–2 to 3.0 × 10–1 pct, respectively. Inclusion size is largely restricted by fast cooling rate despite significant O uptake from the flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. S.H. Wang, C.C. Chiang, and S.L.I. Chan: Mater. Sci. Eng. A, 2003, vol. 344, pp. 288–95.

    Article  Google Scholar 

  2. T.M. Donizete Borba, W. Duarte Flores, L. de Oliveira Turani, and R. Cardoso Junior: Weld. Int., 2017, vol. 31, pp. 184–95.

    Article  Google Scholar 

  3. K. Ichikawa, S. Ohkita, S. Funaki, N. Yurioka, and Y. Horii: Q. J. Jpn. Weld. Soc., 1995, vol. 13, pp. 500–07.

    Article  Google Scholar 

  4. A. Choudhary, M. Kumar, and D.R. Unune: Def. Technol., 2019, vol. 15, pp. 72–82.

    Article  Google Scholar 

  5. R.A. Ricks, P.R. Howell, and G.S. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732–40.

    Article  CAS  Google Scholar 

  6. A.G. Glover, J.T. McGrath, M.J. Tinkler, and G.C. Weatherly: Weld. J., 1977, vol. 56, pp. 267s–73s.

    Google Scholar 

  7. J. Pu, S.F. Yu, and Y.Y. Li: J. Alloys Compd., 2017, vol. 692, pp. 351–58.

    Article  CAS  Google Scholar 

  8. H. Guo, S. Yang, T. Wang, H. Yuan, Y. Zhang, and J. Li: J. Mater. Sci. Technol., 2022, vol. 99, pp. 277–87.

    Article  Google Scholar 

  9. S.S. Babu, S.A. David, and T. DebRoy: Sci. Technol. Weld. Joining, 1996, vol. 1, pp. 17–27.

    Article  CAS  Google Scholar 

  10. S.S. Babu, S.A. David, J.M. Vitek, K. Mundra, and T. DebRoy: Mater. Sci. Technol., 1995, vol. 11, pp. 186–99.

    Article  CAS  Google Scholar 

  11. J. Pu, S.F. Yu, and Y.Y. Li: J. Mater. Process. Technol., 2017, vol. 240, pp. 145–53.

    Article  CAS  Google Scholar 

  12. Y. Wu, X. Yuan, I. Kaldre, M. Zhong, Z. Wang, and C. Wang: Metall. Mater. Trans. B, 2023, vol. 54B, pp. 50–55.

    Article  Google Scholar 

  13. C.S. Chai and T.W. Eagar: Weld. J., 1982, vol. 61, pp. 229–32.

    Google Scholar 

  14. Y. Zhang, J. Zhang, H. Liu, Z. Wang, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1329–34.

    Article  Google Scholar 

  15. K.P. Ferrera and D.L. Olson: Weld. J., 1975, vol. 54, pp. 221s–s215.

    Google Scholar 

  16. D.L. Olson, R. Dixon, and A.L. Liby: Welding: Theory and Practice, North-Holland, Amsterdam, 1990, pp. 117–69.

    Google Scholar 

  17. D. Bhandari, R. Chhibber, N. Arora, and R. Mehta: J. Manuf. Process., 2016, vol. 23, pp. 61–74.

    Article  Google Scholar 

  18. J. Zhang, T. Coetsee, and C. Wang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 16–21.

    Article  Google Scholar 

  19. M.L.E. Davis and N. Bailey: Weld. J., 1991, vol. 70, pp. 57–61.

    Google Scholar 

  20. C. Natalie, D.L. Olson, and M. Blander: Annu. Rev. Mater. Sci., 1986, vol. 16, pp. 389–413.

    Article  CAS  Google Scholar 

  21. M. Allibert, H. Gaye, J. Geiseler, D. Janke, and B.J. Keene: Slag Atlas, 2nd ed. Verlag Stahleisen GmbH, Düsseldorf, 1995, p. 189.

    Google Scholar 

  22. X. Yuan, M. Zhong, Y. Wu, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 656–61.

    Article  Google Scholar 

  23. X. Zou, D. Zhao, J. Sun, C. Wang, and H. Matsuura: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 481–89.

    Article  Google Scholar 

  24. C. Wang and J. Zhang: Acta Metall. Sin., 2021, vol. 57, pp. 1126–40.

    CAS  Google Scholar 

  25. K. Sakata and H. Suito: Metall. Mater. Trans. B, 1999, vol. 30B, pp. 1053–63.

    Article  CAS  Google Scholar 

  26. A.O. Kluken and Ø. Grong: Metall. Mater. Trans. A, 1989, vol. 20A, pp. 1335–49.

    Article  CAS  Google Scholar 

  27. K. Beskow and D. Sichen: Scand. J. Metall., 2003, vol. 32, pp. 320–28.

    Article  CAS  Google Scholar 

  28. D. You, S.K. Michelic, P. Presoly, J. Liu, and C. Bernhard: Metals., 2017, vol. 7, pp. 1–31.

    Google Scholar 

  29. S. Liu and D.L. Olson: Weld. J., 1986, vol. 2, pp. 139s–149s.

    Google Scholar 

  30. S. Liu and D.L. Olson: J. Mater. Eng., 1987, vol. 9, pp. 237–51.

    Article  CAS  Google Scholar 

  31. X. Yuan, Y. Wu, M. Zhong, S. Basu, Z. Wang, and C. Wang: Sci. Technol. Weld. Joining, 2022, vol. 27, pp. 683–90.

    Article  CAS  Google Scholar 

  32. J.S. Seo, C. Lee, and H.J. Kim: ISIJ Int., 2013, vol. 53, pp. 279–85.

    Article  CAS  Google Scholar 

  33. C.S. Chai and T.W. Eagar: Metall. Mater. Trans. B, 1981, vol. 12B, pp. 539–47.

    Article  CAS  Google Scholar 

  34. G. Beltom, T. Moore, and E. Tankins: Weld. J., 1963, vol. 42, pp. 289s–297s.

    Google Scholar 

Download references

Acknowlegments

The authors sincerely thank the National Key Research and Development Program of China (Grant No. 2022YFE0123300) and National Natural Science Foundation of China (Grant Nos. U20A20277 and 52150610494).

Conflict of interest

No potential conflict of interest was reported by the author(s).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Calculation of Gibbs-Free Energy Change Δg 2 for Reaction [2]

Appendix: Calculation of Gibbs-Free Energy Change Δg 2 for Reaction [2]

It is suggested that the effective temperature of chemical reactions in weld pool is 2000 °C.[33] The standard Gibbs-free energy change of Reaction [2] (from 1713 °C to 2000 °C) is referenced from the previous work as Eq. [A1].[34] Gibbs-free energy change of Reaction [2], namely ΔG2, is then given by Eq. [A2]. Since dilute solutions of Si and O in Fe liquid behave ideally according to Henry’s law and the slag forms ideal solution, both γSi and γO is determined to unity. [pct Si] and [pct O] are determined from nominal Si and O compositions from BM and wire as reported previously.[18]

$$\Delta G_{2}^{\theta } = 542915.10 - 203.11T\,\left( {{\text{J}}/{\text{mol}}} \right) $$
(A1)
$$ \Delta G_{2} = \Delta G_{2}^{\theta } + RT\ln \frac{{\gamma_{{{\text{Si}}}} \left[ {\text{pct Si}} \right] \cdot \gamma_{O}^{2} \left[ {\text{pct O}} \right]}}{{\alpha_{{{\text{SiO}}_{{2}} }} }}\,\left( {{\text{J}}/{\text{mol}}} \right) $$
(A2)

where γSi and γO are the activity coefficients of Si and O; \(\alpha_{{{\text{SiO}}_{{2}} }}\) is SiO2 activity, which was calculated by FactSage 8.1 software (Equilib Module) using the FToxide and FactPS database, and the calculated results of \(\alpha_{{{\text{SiO}}_{{2}} }}\) and ΔG2 are presented in the Table AI above.

Table AI The calculated results of \(\alpha_{{{\text{SiO}}_{{2}} }}\) and ΔG2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Zhong, M., Kaldre, I. et al. Role of SiO2 upon Weld Metal Inclusion Characteristics in EH36 Shipbuilding Steels Treated by CaF2–SiO2 Fluxes. Metall Mater Trans B 54, 989–995 (2023). https://doi.org/10.1007/s11663-023-02781-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02781-w

Navigation