Skip to main content
Log in

Heat Transfer Simulation for Covers in Continuous Casting Process of Steel and Its Application

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A heat transfer model for covers in steel continuous casting process has been established. In the model, the boundary temperature of bloom is firstly calculated by a calibrated three dimensional heat transfer model for continuous casting strand. The cover model has been developed based on heat transfer and surface to surface radiation, and most important, the cover effect is evaluated by specially designed probes placed close to the bloom surface. Then the influences of cover’s thermo-physical properties and geometry have been fully studied, including the emissivity, thermal conductivity, specific heat, size, shape and structure. And then some principles for cover design have been presented. According to the numerical model and analytical analysis, the final emissivity reduction of cover is determined by cover’s emissivity, bloom’s emissivity, the gap between bloom and cover, and cover’s thermal conductivity. Besides, the transient time is proportional to the cover’s density, cover’s specific heat and cover’s thickness. Finally, the cover model has been applied to improve the cover effect and improve the heat transfer model of strand. Results indicate that the improved model is much better agreeing with the measurements, by reducing the maximum error from ± 30 °C to ± 16 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. C. Ji, S.M. Deng, R. Guan, and M.Y. Zhu: Steel Res. Int., 2019, vol. 90, p. 1800476.

    Article  Google Scholar 

  2. Y.W. Huang, M.J. Long, D.F. Chen, K. Tan, H.M. Duan, and P. Xu: Int. J. Therm. Sci., 2019, vol. 138, pp. 467–79.

    Article  CAS  Google Scholar 

  3. J.C. Ma, Z. Xie, and G.L. Jia: ISIJ Int., 2008, vol. 48, pp. 1722–727.

    Article  CAS  Google Scholar 

  4. Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34B, pp. 685–705.

    Article  CAS  Google Scholar 

  5. S. Louhenkilpi, E. Laitinen, and R. Nieminen: Metall. Trans. B, 1993, vol. 24B, pp. 685–93.

    Article  CAS  Google Scholar 

  6. K.H. Spitzer, K. Harste, B. Weber, P. Monheim, and K. Schwerdtfeger: ISIJ Int., 1992, vol. 32, pp. 848–56.

    Article  CAS  Google Scholar 

  7. M. Yao, H.B. Yin, and D.C. Fang: ISIJ Int., 2004, vol. 44, pp. 1696–704.

    Article  Google Scholar 

  8. S. Louhenkilpi, M. Mäkinen, S. Vapalahti, T. Räisänen, and J. Laine: Mater. Sci. Eng. A, 2005, vol. 413, pp. 135–38.

    Article  Google Scholar 

  9. R. Hardin, P. Du, and C. Beckermann: In METEC InSteelCon 2011 STEEL SIM, Düsseldorf, Germany, 2011, pp. 1–6.

  10. J.K. Brimacombe: Can. Metall. Q., 1976, vol. 15, pp. 163–75.

    Article  Google Scholar 

  11. J.E. Lait, J.K. Brimacombe, F. Weinberg, and F.C. Muttitt: In Open Hearth Conf. Proc, 1973. vol. 56, pp. 269–302.

  12. B. Petrus, K. Zheng, X. Zhou, B.G. Thomas, and J. Bentsman: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 87–103.

    Article  Google Scholar 

  13. R.A. Hardin, and C. Beckermann: ASME-Publications-HTD, 1997. vol. 347, pp. 9–20.

  14. S. Louhenkilpi, J. Miettinen, J. Laine, R. Vesanen, I. Rentola, J. Moilanen, V.V. Visuri, E.P. Heikkinen, and A. Jokilaakso: In ICASP-5 & CSSCR-5, UK, 2019. P. 012051.

  15. J. Yang, Z. Xie, Z.P. Ji, and H.J. Meng: ISIJ Int., 2014, vol. 54, pp. 328–35.

    Article  CAS  Google Scholar 

  16. Y. Zhao, D.F. Chen, M.J. Long, J.L. Shen, and R.S. Qin: Ironmak. Steelmak., 2014, vol. 41, pp. 377–86.

    Article  CAS  Google Scholar 

  17. T. Mauder and J. Stetina: Mater. Tehnol., 2014, vol. 48, pp. 521–24.

    Google Scholar 

  18. Y.Y. Zhai, Y. Li, and Z.G. Ao: J. Northeast. Univ. (Nat. Sci.), 2019, vol. 40, pp. 658–62. (in Chinese).

    Google Scholar 

  19. J.C. Ma, C.S. Lu, Y.T. Yan, and L.Y. Chen: Int. J. Cast Met. Res., 2014, vol. 27, pp. 135–40.

    Article  Google Scholar 

  20. Z. Xie and J. Yang: Steel Res. Int., 2015, vol. 86, pp. 766–74.

    Article  CAS  Google Scholar 

  21. J. Savage and W.H. Pritchard: J. Iron Steel Inst., 1954, vol. 178, pp. 269–77.

    Google Scholar 

  22. T. Nozaki, J. Matsuno, K. Murata, H. Ooi, and M. Kodama: Trans. Iron Steel Inst. Jpn., 1978, vol. 18, pp. 330–38.

    Article  CAS  Google Scholar 

  23. J. Yang, Z. Xie, H.J. Meng, W.H. Liu, and Z.P. Ji: Int. J. Heat Mass Transf., 2014, vol. 76, pp. 492–98.

    Article  Google Scholar 

  24. J. Yang, H.J. Meng, Z.P. Ji, and Z. Xie: J. Northeast. Univ. (Nat. Sci.), 2014, vol. 35, pp. 613–16. (in Chinese).

    Google Scholar 

  25. P. Wang, Z. Xie, and Z.W. Hu: Int. J. Thermophys., 2016, vol. 37, p. 129.

    Article  Google Scholar 

  26. P. Wang, Z.W. Hu, Z. Xie, and M. Yan: Rev. Sci. Instrum., 2018, vol. 89, p. 054903.

    Article  Google Scholar 

  27. C. Assuncao, R. Tavares, and G. Oliveira: Ironmak. Steelmak., 2014, vol. 2014, p. 174328.

    Google Scholar 

Download references

Acknowledgments

The authors would gratefully thank the financial support of National Science Foundation of China (Nos. U21A20117, 52074085, and 61703084) and the research support of Nanjing Iron & Steel Cooperation and the support of Huaigang Special Steel Co., Ltd of Shagang Group.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yang or Zhi Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Hu, Zw., Yu, Z. et al. Heat Transfer Simulation for Covers in Continuous Casting Process of Steel and Its Application. Metall Mater Trans B 54, 1262–1274 (2023). https://doi.org/10.1007/s11663-023-02760-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02760-1

Navigation