Skip to main content
Log in

Synthesizing Zinc Arsenate and Its Application in Cobalt Purification Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The rise of residues derived from hydrometallurgical processes of zinc production has made this industry face numerous challenges. Residues contain elements whose reclamation is of high significance due to the economic improvement of the whole process and the removal of environmental consequences. The previous study examined the selective extraction of Zn and As from hot purification filter cakes of the zinc process and found that the dominant species in arsenic-bearing solution was AsO43−. With a Zn2(AsO4) (OH) composition containing As 23.1 wt pct, As was precipitated with an 95 pct efficiency by adding zinc sulfate under the following conditions: Molar ratio Zn/As = 1, pH 6.5, time = 4 hours, temperature = 80 °C, and stirring velocity = 500 rpm. The zinc arsenate hydroxide was successfully used as an activator of the zinc powder in the cobalt cementation process. The examination of the precipitate revealed that As increased the anodic and cathodic reactions potential difference. Thus, thermodynamic driving force of the reaction increased and cementation improved by forming intermediate compounds, like CoAs, with higher stability and more positive reduction potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Choi, K. Yoo, R.D. Alorro, and C.B. Tabelin: Miner. Eng., 2020, vol. 145, p. 106061.

    Article  CAS  Google Scholar 

  2. J. Lu, D. Dreisinger, and K. Rees: Hydrometallurgy, 2020, vol. 197, p. 105479.

    Article  CAS  Google Scholar 

  3. B. Behnajady, A.A. Balesini, and J. Moghaddam: Can. Metall. Q., 2014, vol. 53(3), pp. 333–39.

    Article  CAS  Google Scholar 

  4. V. Vahidfard, K. Shayesteh, P. Abbasi, and M. Hosseini: J. Part. Sci. Technol., 2021, vol. 6(2), pp. 81–93.

    Google Scholar 

  5. P. Abbasi, K. Shayesteh, V. Vahidfard, and M. Hosseini: Iran. J. Anal. Chem., 2021, vol. 8(1), pp. 17–28.

    CAS  Google Scholar 

  6. P. Abbasi, K. Shayesteh, V. Vahidfard, and M. Hosseini: Iran. J. Chem. Eng., 2020, vol. 17(4), pp. 3–20.

    Google Scholar 

  7. K. Shayesteh, P. Abbasi, V. Vahidfard, and M. Shahediasl: Arabian J. Sci. Eng., 2020, vol. 45(2), pp. 587–98.

    Article  CAS  Google Scholar 

  8. D.C.A. Gonçalves, D. Majuste, and V.S.T. Ciminelli: Hydrometallurgy, 2021, vol. 201, p. 105572.

    Article  Google Scholar 

  9. B. Krause and R. Sandenbergh: Hydrometallurgy, 2015, vol. 155, pp. 132–40.

    Article  CAS  Google Scholar 

  10. B. Behnajady and J. Moghaddam: J. Cent. S. Univ., 2015, vol. 22(6), pp. 2066–72.

    Article  CAS  Google Scholar 

  11. J. Näsi: Hydrometallurgy, 2004, vol. 73(1), pp. 123–32.

    Article  Google Scholar 

  12. T. Gutknecht, Y. Cao, Y. Colombus, and B.M. Steenari: Hydrometallurgy, 2018, vol. 181, pp. 169–79.

    Article  Google Scholar 

  13. T. Wang, G. Lin, L. Gu, T. Hu, T. Xie, H. Qu, S. Wang, L. Zhang, S. Cheng, J. Liu, and H. Di: Mater. Res. Express, 2019, vol. 6(10), p. 106588.

    Article  CAS  Google Scholar 

  14. M.D. Rao, A. Meshram, H.R. Verma, K.K. Singh, and T.R. Mankhand: Hydrometallurgy, 2020, vol. 195, p. 105352.

    Article  CAS  Google Scholar 

  15. B. Behnajady and J. Moghaddam: Hydrometallurgy, 2017, vol. 173, pp. 232–40.

    Article  CAS  Google Scholar 

  16. B. Behnajady and J. Moghaddam: Chem. Eng. Res. Des., 2017, vol. 117, pp. 564–74.

    Article  CAS  Google Scholar 

  17. G. Roman-Ross, G.J. Cuello, X. Turrillas, A. Fernandez-Martinez, and L. Charlet: Chem. Geol., 2006, vol. 233(3–4), pp. 328–36.

    Article  CAS  Google Scholar 

  18. K. Tozawa, T. Nishimura, M. Akahori, and M.A. Malaga: Hydrometallurgy, 1992, vol. 30(1–3), pp. 445–61.

    Article  CAS  Google Scholar 

  19. K. Tanabe, T. Ohgai, T. Akiyama and H. Fukushima: in Lead and Zinc ’95, 1995, pp. 303–09.

  20. A. Nelson: Novel activators in cobalt removal from zinc electrolyte by cementation, Ph.D. Thesis, Dept. of Mining and Metallurgical Engineering, McGill Univeristy, Montreal, 1998.

  21. P. G. West-Sells: Fundamental study of the deposition of cobalt from electrolytes containing zinc, Ph.D. Thesis, Dept. of Metals and Materials Engineering, University of British Columbia, Vancouver, 1996.

  22. K. Higashi, H. Fukushima, T. Urakawa, T. Adaniya, and K. Matsudo: J. Electrochem. Soc., 1981, vol. 128(10), pp. 2081–85.

    Article  CAS  Google Scholar 

  23. O. Bøckman and T. Østvold: Hydrometallurgy, 2000, vol. 54(2), pp. 65–78.

    Article  Google Scholar 

  24. O. Bøckman and T. Østvold: Hydrometallurgy, 2000, vol. 55(1), pp. 107–12.

    Article  Google Scholar 

  25. O. Bøckman, T. Østvold, G.A. Voyiatzis, and G.N. Papatheodorou: Hydrometallurgy, 2000, vol. 55(1), pp. 93–105.

    Article  Google Scholar 

  26. S. Zaheri: High temperature and high pressure cobalt cementation onto zinc dust, M.A.Sc. Thesis, Dept. of Materials Engineering, University of British Columbia, Vancouver, 2015.

  27. R. W. Lew: The removal of cobalt from zinc sulphate electrolyte using the copper-antimony process, M.A.Sc. Thesis, Dept. of Metals and Materials Engineering, University of British Columbia, Vancouver, 1994.

  28. V. van der Pas and D.B. Dreisinger: Hydrometallurgy, 1996, vol. 43(1–3), pp. 187–205.

    Google Scholar 

  29. A. Nelson, W. Wang, G.P. Demopoulos, and G. Houlachi: Miner. Process. Extr. Metall. Rev., 2000, vol. 20(1), pp. 325–56.

    Article  CAS  Google Scholar 

  30. K. BØrve and T. Østvold: in Hydrometallurgy’94, Springer, 1994, pp. 563–77.

  31. R. Raghavan, P.K. Mohanan, and S.K. Verma: Hydrometallurgy, 1999, vol. 51(2), pp. 187–206.

    Article  CAS  Google Scholar 

  32. D. Yang, G. Xie, G. Zeng, J. Wang, and R. Li: Hydrometallurgy, 2006, vol. 81(1), pp. 62–66.

    Article  CAS  Google Scholar 

  33. B.S. Boyanov, V.V. Konareva, and N.K. Kolev: Hydrometallurgy, 2004, vol. 73(1–2), pp. 163–68.

    Article  CAS  Google Scholar 

  34. D. Jun, W. De-quan, J. Lan, and J. Man: Trans Nonferrous Met. Soc. China, 2002, vol. 12(6), pp. 1172–75.

    Google Scholar 

  35. T.M. Dreher, A. Nelson, G.P. Demopoulos, and D. Filippou: Hydrometallurgy, 2001, vol. 60(2), pp. 105–16.

    Article  CAS  Google Scholar 

  36. A. Dib and L. Makhloufi: Miner. Eng., 2007, vol. 20(2), pp. 146–51.

    Article  CAS  Google Scholar 

  37. A. Dib and L. Makhloufi: Chem. Eng. J., 2007, vol. 130(1), pp. 39–44.

    Article  CAS  Google Scholar 

  38. A. Dib and L. Makhloufi: Chem. Eng. J., 2006, vol. 123(1–2), pp. 53–58.

    Article  CAS  Google Scholar 

  39. J. Lu, Cobalt precipitation by reduction with sodium borohydride, M.A.Sc. Thesis, Dept. of Materials Engineering, University of British Columbia, Vancouver, 1995.

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bahram Behnajady or Javad Moghaddam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnajady, B., Moghaddam, J. Synthesizing Zinc Arsenate and Its Application in Cobalt Purification Process. Metall Mater Trans B 54, 1113–1121 (2023). https://doi.org/10.1007/s11663-023-02744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02744-1

Navigation