Skip to main content
Log in

Influence Mechanism of Crucible Materials on Cleanliness and Inclusion Characteristics of High-Nitrogen Stainless Bearing Steel During Vacuum Carbon Deoxidation

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 June 2023

This article has been updated

Abstract

High cleanliness is an important guarantee for the long-service of bearing steel. In this study, the effect of crucible materials on cleanliness and inclusion characteristics of high-nitrogen stainless bearing steel (HNSBS) during vacuum carbon deoxidation was comprehensively investigated by microstructure characterization and thermodynamic analysis. The results showed that the ultimate O contents using MgO·Al2O3, MgO, and ZrO2 (MA, M, and Z) crucibles could be decreased from about 0.0060 to 0.0028, 0.0012, and 0.0022 wt pct, respectively. The ranking of crucible thermodynamic stability during vacuum carbon deoxidation was M < MA < Z, representing the decreasing of oxygen transfer rate due to crucible decomposition. The deoxidation rate of carbon–oxygen reaction increased with the decreasing of CO partial pressure, and the ranking of deoxidation rate using various crucibles was Z < MA < M. Meanwhile, the main oxide inclusions in steel using MA, M, and Z crucibles transformed from Al2O3 to MgO·Al2O3, MgO, and ZrO2, respectively. The area and average size of inclusions in steel using M crucible were smaller than the others owing to the decreasing of large-size Al2O3 inclusions and the increasing of percentage of low-density Mg-containing inclusions, while the existence of high-density ZrO2 inclusions in steel using Z crucible restricted the floating and removal of inclusions. Therefore, MgO crucible was more appropriate to melt high-cleanliness HNSBS with lower O content and fewer deleterious inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. H.F. Xu, G.L. Wu, C. Wang, J. Li, and W.Q. Cao: J. Iron Steel Res. Int., 2018, vol. 25, pp. 954–67.

    Article  Google Scholar 

  2. N.B. Dhokey, A. Upadhye, N. Shah, and K.T. Tharian: Mater. Today: Proc., 2021, vol. 43, pp. 3023–29.

    CAS  Google Scholar 

  3. H. Feng, Z.H. Jiang, H.B. Li, P.C. Lu, S.C. Zhang, H.C. Zhu, B.B. Zhang, T. Zhang, D.K. Xu, and Z.G. Chen: Corros. Sci., 2018, vol. 144, pp. 288–300.

    Article  CAS  Google Scholar 

  4. Y.X. Qiao, Y.G. Zheng, P.C. Okafor, and W. Ke: Electrochim. Acta, 2009, vol. 54, pp. 2298–2304.

    Article  CAS  Google Scholar 

  5. H. Feng, H.B. Li, Z.H. Jiang, T. Zhang, N. Dong, S.C. Zhang, P.D. Han, S. Zhao, and Z.G. Chen: Corros. Sci., 2019, vol. 158, p. 108081.

    Article  CAS  Google Scholar 

  6. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, H.C. Zhu, Z.Z. Liu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2210–23.

    Article  Google Scholar 

  7. L. Cao, L.G. Zhu, and Z.H. Guo: J. Iron Steel Res. Int., 2022, vol. 30, pp.1–20.

    Article  Google Scholar 

  8. K. Hashimoto, T. Fujimatsu, N. Tsunekage, K. Hiraoka, K. Kida, and E.C. Santos: Mater. Des., 2011, vol. 32, pp. 1605–11.

    Article  CAS  Google Scholar 

  9. Z.X. Cao, Z.Y. Shi, F. Yu, G.L. Wu, W.Q. Cao, and Y.Q. Weng: Int. J. Fatigue, 2019, vol. 126, pp. 1–5.

    Article  CAS  Google Scholar 

  10. C.Y. Yang, Y.K. Luan, D.Z. Li, and Y.Y. Li: J. Mater. Sci. Technol., 2019, vol. 35, pp. 1298–1308.

    Article  CAS  Google Scholar 

  11. G.X. Qiu, D.P. Zhan, L. Cao, and H.S. Zhang: J. Iron Steel Res. Int., 2021, vol. 28, pp. 1168–79.

    Article  CAS  Google Scholar 

  12. A.L.V.D. Costa e Silva: J. Mater. Res. Technol., 2019, vol. 8, pp. 2408–22.

    Article  CAS  Google Scholar 

  13. H. Feng, H.B. Li, Z.Z. Liu, Z.H. Jiang, P.C. Lu, and T. He: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 3777–87.

    Article  Google Scholar 

  14. P.C. Lu, H.B. Li, H. Feng, Z.H. Jiang, and Y.B. Dai: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1920–35.

    Article  Google Scholar 

  15. P.V. Sklyuev, V.S. Gulyakov, O.A. Polzunov, and V.E. Sokolov: Met. Sci. Heat Treat., 1982, vol. 24, pp. 774–77.

    Article  Google Scholar 

  16. J.L. Guo, L.H. Zhao, Y.P. Bao, S. Gao, and M. Wang: Int. J. Miner. Metall. Mater., 2019, vol. 26, pp. 681–88.

    Article  CAS  Google Scholar 

  17. B.H. Kang, Y.R. Gwak, and K.Y. Kim: Trans. Indian Inst. Met., 2014, vol. 67, pp. 617–22.

    Article  CAS  Google Scholar 

  18. H. Ling and L. Zhang: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2963–68.

    Article  Google Scholar 

  19. P.H. Li, Q.J. Wu, W.H. Hu, and J.S. Ye: J. Iron Steel Res. Int., 2015, vol. 22, pp. 63–67.

    Article  Google Scholar 

  20. Z.L. Xue, Z.B. Li, J.W. Zhang, and Y.L. Gao: J. Iron Steel Res. Int., 2003, vol. 15, pp. 5–8.

    CAS  Google Scholar 

  21. J. Feng, Y.P. Bao, X. Wu, and H. Cui: Int. J. Miner. Metall. Mater., 2010, vol. 17, pp. 541–45.

    Article  CAS  Google Scholar 

  22. T. Kuwabara, K. Umezawa, K. Mori, and H. Watanabe: Trans. Iron Steel Inst. Jpn., 1988, vol. 28, p. 305.

    Article  CAS  Google Scholar 

  23. K. Wang, Y. Wang, J. Xu, W. Xie, T. Chen, and M. Jiang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 3370–75.

    Article  Google Scholar 

  24. Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen: Int. J. Miner. Metall. Mater., 2020, vol. 27, pp. 1083–99.

    Article  CAS  Google Scholar 

  25. S. Jansson, V. Brabie, and P. Jönsson: Ironmak. Steelmak., 2006, vol. 33, pp. 389–97.

    Article  CAS  Google Scholar 

  26. S. Smets, S. Parada, J. Weytjens, G. Heylen, P.T. Jones, M. Guo, B. Blanpain, and P. Wollants: Ironmak. Steelmak., 2003, vol. 30, pp. 293–300.

    Article  CAS  Google Scholar 

  27. F. Simbarashe, L. Mykhaylo, W.D. Moegamat, P. Lydia, L. Vladimir, T. Sun, R. Tang, F. Xiao, F.V. Pavel, and T.P. Boris: Mater. Des., 2020, vol. 186, p. 108295.

    Article  Google Scholar 

  28. S.A. Kiseleva, M.I. Vinograd, V.G. Kostogonov, and O.S. Tuchkina: Refractories, 1979, vol. 20, pp. 573–75.

    Article  Google Scholar 

  29. S. Imashuku: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 190–97.

    Article  Google Scholar 

  30. Y. Zhao, L. Wang, C. Chen, J. Li, and X. Li: Ceram. Int., 2023, vol. 49, pp. 117–25.

    Article  CAS  Google Scholar 

  31. A.L.V.D. Costa e Silva: J. Mater. Res. Technol., 2018, vol. 7, pp. 283–99.

    Article  Google Scholar 

  32. M. Jiang, X.H. Wang, and J.J. Pak: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 1248–59.

    Article  Google Scholar 

  33. H. Li, Y. Han, H. Feng, G. Zhou, Z. Jiang, M. Cai, Y. Li, and M. Huang: J. Mater. Sci. Technol., 2023, vol. 141, pp. 184–92.

    Article  Google Scholar 

  34. G. Sigworth and J. Elliott: Met. Sci., 1974, vol. 8, pp. 298–310.

    Article  CAS  Google Scholar 

  35. Q. Ren, L.F. Zhang, Z.Y. Hu, and L. Cheng: Ironmak. Steelmak., 2021, vol. 48, pp. 191–99.

    Article  CAS  Google Scholar 

  36. Y. Ren, L. Zhang, W. Yang, and H. Duan: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 2057–71.

    Article  Google Scholar 

  37. D. Hou, D. Wang, Z. Jiang, T. Qu, and H. Wang: J. Sustain. Metall., 2020, vol. 6, pp. 463–77.

    Article  Google Scholar 

  38. R.M. Geng, J. Li, and C.B. Shi: ISIJ Int., 2021, vol. 61, pp. 1506–13.

    Article  CAS  Google Scholar 

  39. S.B. Lee, D. Kim, and J.J. Pak: ISIJ Int., 2009, vol. 49, pp. 337–42.

    Article  Google Scholar 

  40. H. Liu, J. Liu, S. Michelic, F. Wei, C. Zhuang, Z. Han, and S. Li: Ironmak. Steelmak., 2015, vol. 43, pp. 1–9.

    Google Scholar 

  41. C.B. Shi, X.C. Chen, and H.J. Guo: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 295–302.

    Article  CAS  Google Scholar 

  42. W. Gong, Z.H. Jiang, L.X. Zhang, C.Y. Chen, and Y.W. Dong: Mater. Sci. Eng. A, 2020, vol. 791, p. 139410.

    Article  CAS  Google Scholar 

  43. T. Miki: Treatise on Process Metallurgy, Elsevier, Boston, 2014, pp. 557–85.

    Book  Google Scholar 

  44. H. Itoh, M. Hino, and S. Ban-Ya: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 953–56.

    Article  CAS  Google Scholar 

  45. H.C. Zhu, H.B. Li, Z.W. Ni, Z.Y. He, Z.H. Jiang, H. Feng, S.C. Zhang, and D.S. Mao: Metall. Mater. Trans. B, 2021, vol. 53B, pp. 50–59.

    Google Scholar 

  46. S. Zhang, J. Yu, H. Li, Z. Jiang, Y. Geng, H. Feng, B. Zhang, and H. Zhu: J. Mater. Sci. Technol., 2022, vol. 102, pp. 105–14.

    Article  Google Scholar 

  47. M. Wakoh and N. Sano: ISIJ Int., 2007, vol. 47, pp. 627–32.

    Article  CAS  Google Scholar 

  48. C. Wang, R. Ma, Y. Zhou, Y. Liu, E.F. Daniel, X. Li, P. Wang, J. Dong, and W. Ke: J. Mater. Sci. Technol., 2021, vol. 93, pp. 232–43.

    Article  CAS  Google Scholar 

  49. H. Feng, H.B. Li, J. Dai, Y. Han, J.D. Qu, Z.H. Jiang, Y. Zhao, and T. Zhang: Corros. Sci., 2022, vol. 204, p. 110396.

    Article  CAS  Google Scholar 

  50. D. Kumar and P.C. Pistorius: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 181–91.

    Article  Google Scholar 

  51. C. Liu, F. Huang, J. Suo, and X. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 989–98.

    Article  Google Scholar 

  52. S. Zhang, H. Li, M. Ran, Z. Jiang, L. Zheng, H. Feng, J. Yu, and Y. Dai: ISIJ Int., 2022, vol. 62, pp. 2207–16.

    Article  CAS  Google Scholar 

  53. S.F. Yang, Q.Q. Wang, L.F. Zhang, J.S. Li, and K. Peaslee: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 731–50.

    Article  Google Scholar 

  54. K. Fujii, T. Nagasaka, and M. Hino: ISIJ Int., 2000, vol. 40, pp. 1059–66.

    Article  CAS  Google Scholar 

  55. W.J. Ma, Y.P. Bao, M. Wang, and L.H. Zhao: ISIJ Int., 2014, vol. 54, pp. 536–42.

    Article  CAS  Google Scholar 

  56. A.A.B. Sugden and H.K.D.H. Bhadeshia: Metall. Trans. A, 1988, vol. 19, pp. 669–74.

    Article  Google Scholar 

  57. H.S. Kim, C. Chang, and H. Lee: Scr. Mater., 2005, vol. 53, pp. 1253–58.

    Article  CAS  Google Scholar 

  58. B.A. Wang, N. Wang, Y.J. Yang, H. Zhong, M.Z. Ma, X.Y. Zhang, and R.P. Liu: Trans. Nonferrous Met. Soc. China, 2018, vol. 28, pp. 1132–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was sponsored by the National Natural Science Foundation of China [Grant Nos. U1960203/52004060/52174308], China Postdoctoral Science Foundation [Grant No. 2020M670775], Talent Project of Revitalizing Liaoning [Grant No. XLYC1902046], Northeastern University Postdoctoral Funds [Grant No. 20200101], Fundamental Research Funds for the Central Universities [Grant Nos. N2125017/N2225031], Program of Introducing Talents of Discipline to Universities [Grant No. B21001], and Elite Program of Southern Taihu Lake.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Bing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted August 25, 2022, accepted January 28, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HB., Lu, PC., Feng, H. et al. Influence Mechanism of Crucible Materials on Cleanliness and Inclusion Characteristics of High-Nitrogen Stainless Bearing Steel During Vacuum Carbon Deoxidation. Metall Mater Trans B 54, 1099–1112 (2023). https://doi.org/10.1007/s11663-023-02743-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02743-2

Navigation