Skip to main content
Log in

Multiphase Simulation on the Collision, Transport, and Removal of Non-metallic Inclusions in the Molten Steel During RH Refining

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 June 2023

This article has been updated

Abstract

The initial size distribution of inclusions in the molten steel during the Ruhrstahl–Heraeus (RH) refining was investigated through an industrial trial. A three-dimensional numerical model for the steel-argon multiphase fluid flow and the collision, transport, and removal of inclusions in the steel was established to simulate the evolution of inclusions during the RH refining. The particle-size-grouping (PSG) method was applied to evaluate the collision of inclusions, which divided inclusions into sixteen groups with a volume ratio of 2.5 between adjacent groups. Detected inclusions were mostly Al2O3 in aggregations or clusters. The initial number density of inclusions with diameter less than 1 μm was closed to 1 × 1015 #/m3, while that with diameter greater than 10 μm was less than 1 × 1010 #/m3. The calculated total oxygen content in the steel dropped from 251 to 93 ppm in approximately 10 minutes and was 14 ppm after refining for 1800 seconds which agreed well with measured ones. The removal fraction of inclusions increased with the refining time, while the removal rate showed a decrease. The removal fraction was larger than 90 pct at 1800 seconds, indicating a high efficiency of the RH refining in removing inclusions. After 300 seconds of collision, the number density of small inclusions with diameter less than 2.5 μm declined apparently from 1013 to 1015 #/m3 to 1012 #/m3. The distribution of inclusions and the total oxygen content in the steel was position-dependent. Due to the removal condition at the steel surface in the ladle, the number density of inclusions and the total oxygen in the steel near the steel surface and near the zone between two snorkels in the ladle had a minimum value, while that near the side wall of the ladle showed a relatively higher value. The gradient of the T.O content in the cross section near the free surface of the ladle was relatively large, around 15 ppm on the side and less than 2 ppm in the center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Change history

References

  1. N. Sumida, T. Fujii, Y. Oguchi, H. Morishita, K. Yoshimura, and F. Sudo: Kawasaki Steel Tech. Rep., 1983, vol. 8, pp. 69–76.

    Google Scholar 

  2. Y. Luo, C. Liu, Y. Ren, and L. Zhang: Steel Res. Int., 2018, vol. 89, p. 1800048.

    Article  Google Scholar 

  3. Y. Miki, Y. Shimada, B. G. Thomas, and A. Denissov: Iron Steelmaker, 1997, pp. 31–38.

  4. T. Nakaoka, S. Taniguchi, K. Matsumoto, and S.T. Johansen: ISIJ Int., 2001, vol. 41, pp. 1103–11.

    Article  CAS  Google Scholar 

  5. H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426–34.

    Article  CAS  Google Scholar 

  6. W.C. Doo, D.Y. Kim, S.C. Kang, and K.W. Yl: ISIJ Int., 2007, vol. 47, pp. 1070–72.

    Article  CAS  Google Scholar 

  7. C. Liu, L. Zhang, F. Li, K. Peng, F. Liu, Z. Liu, Y. Zhao, W. Yang, and J. Zhang: Steel Res. Int., 2021, vol. 92, pp. 2000608. https://doi.org/10.1002/srin.202000608.

    Article  CAS  Google Scholar 

  8. H. Ling, C. Guo, A.N. Conejo, F. Li, and L. Zhang: Metall. Res. Technol., 2017, vol. 114, pp. 1–3.

    Google Scholar 

  9. H. Ling, F. Li, L. Zhang, and A.N. Conejo: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1950–61.

    Article  Google Scholar 

  10. F. Li, L. Zhang, Y. Liu, and Y. Li: TMS, 2014, vol. 2014, pp. 459–66.

    Google Scholar 

  11. B. Li, Y. Luan, F. Qi, and H. Huo: J. Northeast. Univ., 2005, vol. 26, pp. 759–62.

    Google Scholar 

  12. K. Shirabe and J. Szekely: Trans. Iron Steel Inst. Jpn., 1983, vol. 23, pp. 465–74.

    Article  CAS  Google Scholar 

  13. D. Geng, H. Lei, and J. He: ISIJ Int., 2012, vol. 52, pp. 1036–44.

    Article  CAS  Google Scholar 

  14. D. Geng, J. Zheng, K. Wang, P. Wang, R. Liang, H. Liu, H. Lei, and J.C. He: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1484–93.

    Article  Google Scholar 

  15. S. Zheng and M. Zhu: ICS, 2015, vol. 2015, pp. 362–65.

    Google Scholar 

  16. G. Chen, S. He, Y. Li, and Q. Wang: Ind. Eng. Chem. Res., 2016, vol. 55, pp. 7030–42.

    Article  CAS  Google Scholar 

  17. D. Geng, H. Lei, and J. He: High Temp. Mater. Process., 2017, vol. 36, pp. 523–30.

    Article  Google Scholar 

  18. L. Zhang and F. Li: JOM, 2014, vol. 66, pp. 1227–40.

    Article  CAS  Google Scholar 

  19. D. Geng, H. Lei, and J. He: Metall. Mater. Trans. B, 2009, vol. 41B, pp. 234–47.

    Google Scholar 

  20. S. Chen, H. Lei, and M. Wang: Steel Res. Int., 2021, vol. 92, pp. 1–2.

    Google Scholar 

  21. J. Zhang and H. Lee: ISIJ Int., 2004, vol. 44, pp. 1629–38.

    Article  CAS  Google Scholar 

  22. H. Lei and J. He: J. Non-Cryst. Solids, 2006, vol. 352, pp. 3772–80.

    Article  CAS  Google Scholar 

  23. H. Ling and L. Zhang: JOM, 2013, vol. 65, pp. 1155–63.

    Article  CAS  Google Scholar 

  24. H. Ling, L. Zhang, and H. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2991–3012.

    Article  Google Scholar 

  25. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, pp. 59–82.

    Article  CAS  Google Scholar 

  26. L. Zhang and B. G. Thomas: 7th European Electric Steelmaking Conference, 2002, vol. 2, pp. 77–86.

  27. L. Li, Z. Liu, B. Li, H. Matsuura, and F. Tsukihashi: ISIJ Int., 2015, vol. 55, pp. 1337–46.

    Article  CAS  Google Scholar 

  28. W. Lou and M. Zhu: Trans. Iron Steel Inst. Jpn., 2014, vol. 54, pp. 9–18.

    Article  CAS  Google Scholar 

  29. P.G. Saffman and J.S. Turner: J. Fluid Mech., 1955, vol. 1, pp. 16–30.

    Article  Google Scholar 

  30. U. Lindborg and K. Torssell: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 94–102.

    CAS  Google Scholar 

  31. G. Chen, S. He, Y. Li, Y. Guo, and Q. Wang: JOM, 2016, vol. 68, pp. 2138–48.

    Article  CAS  Google Scholar 

  32. S. Chen, H. Lei, Q. Li, C. Ding, W. Dou, and L. Chang: JOM, 2022, vol. 74, pp. 1578–87.

    Article  CAS  Google Scholar 

  33. S. Chen, H. Lei, H. Hou, C. Ding, H. Zhang, and Y. Zhao: J. Mater. Res. Technol., 2021, vol. 15, pp. 5141–50.

    Article  CAS  Google Scholar 

  34. L. Zhang: Atlas of non-metallic inclusions in steels (I), Metallurgical Industry Press, Beijing, 2019, pp. 100–10.

    Google Scholar 

  35. L. Zhang, B. Rietow, B.G. Thomas, and K. Eakin: ISIJ Int., 2006, vol. 46, pp. 670–79.

    Article  CAS  Google Scholar 

  36. C. Liu, S. Li, and L. Zhang: Acta Metall. Sin., 2018, vol. 54, pp. 347–56.

    CAS  Google Scholar 

  37. W. Lou and M. Zhu: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 762–82.

    Article  Google Scholar 

  38. L. Wang, Q. Zhang, S. Peng, and Z. Li: ISIJ Int., 2005, vol. 45, pp. 331–37.

    Article  CAS  Google Scholar 

  39. H. Duan, Y. Ren, and L. Zhang: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1476–89.

    Article  Google Scholar 

  40. C. Liu, H. Duan, and L. Zhang: Metals, 2019, vol. 9, p. 442.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for support from the National Natural Science Foundation of China (Grant No. U22A20171), the High Steel Center (HSC) at North China University of Technology, and the High Quality Steel Consortium (HQSC) at University of Science and Technology Beijing, China.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jujin Wang or Lifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, K., Wang, J., Li, Q. et al. Multiphase Simulation on the Collision, Transport, and Removal of Non-metallic Inclusions in the Molten Steel During RH Refining. Metall Mater Trans B 54, 928–943 (2023). https://doi.org/10.1007/s11663-023-02736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02736-1

Navigation