Skip to main content
Log in

Simulation and Analysis of Atomization Performance of a Venturi Jet Pyrolysis Reactor

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 June 2023

This article has been updated

Abstract

Venturi jet pyrolysis is a popular method for the preparation of micro–nanocerium oxide. Its atomization performance should be investigated because it influences the purity and particle size of cerium oxide. This was carried out in this study via a combination of experiments and fluent simulation. Images obtained from physical experiments revealed the effect of jet atomization and the variation rule of the average Sauter diameter. Numerical simulation of the jet atomization process was carried out using the VOF-to-DPM model, SST turbulence model, KH-RT droplet crushing model, and random collision model. The initial atomization time of jet atomization decreased with increase in gas velocity, and at varying solution velocities, the initial atomization time of jet atomization varied slightly. Particle uniformity of the Venturi reactor was the best at throat velocities of 35 and 90 m/s at low and high gas velocities, respectively. At varying values of inlet velocities of the solution, the optimum preparation condition was 0.01 m/s and a fine and consistent particle diameter. The findings of this study provide helpful insights for further improving and optimizing the Venturi pyrolysis reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

We state that all data included in this study are available upon request by contact with the corresponding author.

Change history

References

  1. C. Silvia, P. Meritxell, C. Gregori, O. Denise, R. Jordi, M.R. Manuel, C. Eudald, C. Pedro, M.L. Pedro, F.V. Guillermo, C. Pedro, P. Victor, and J. Wladimiro: Int. J. Mol. Sci., 2019, vol. 20(23), pp. 5959–65.

    Article  Google Scholar 

  2. V.D. Kosynkin, A.A. Arzgatkin, E.N. Ivanov, M.G. Chtouts, A.I. Grabko, and A.V. Kardapolov: J. Alloys Compd., 2000, vol. 303, pp. 421–25.

    Article  Google Scholar 

  3. X.F. Zhang, R.T. Guo, J.L. Wu, and W.G. Pan: J. Eng. Themal Energy Power, 2022, vol. 37(02), pp. 92–99.

    Google Scholar 

  4. W.C. Chueh, Y. Hao, and W.C. Jung: Nat. Mater., 2012, vol. 11(2), pp. 155–61.

    Article  CAS  Google Scholar 

  5. C. Lv, M.H. Sun, H.X. Yin, Z.F. Wang, and T.Y. Xia: Crystals, 2021, vol. 11(8), pp. 912–22.

    Article  CAS  Google Scholar 

  6. C. Lv, T.A. Zhang, Z.H. Dou, and Q.Y. Zhao: Rare Met., 2019, vol. 38(12), pp. 1160–68.

    Article  CAS  Google Scholar 

  7. Q. Li, D.Z. Ming, M. Lei, X. Guo, J.L. Liu, H.W. Zhu, L. Fang, and Z.B. Wang: Eng. Appl. Comput. Fluid Mech., 2022, vol. 16(1), pp. 229–47.

    Google Scholar 

  8. A. Mosavi, S. Shamshirband, E. Salwana, K.W. Chau, and J.H.M. Tah: Eng. Appl. Comput. Fluid Mech., 2019, vol. 13(1), pp. 482–92.

    Google Scholar 

  9. S. Shamshirband, M. Babanezhad, A. Mosavi, N. Nabipour, E. Hajnal, L. Nadai, and K.-W. Chau: Eng. Appl. Comput. Fluid Mech., 2020, vol. 14(1), pp. 367–78.

    Google Scholar 

  10. K. Sakamatapan, M. Mesgarpour, O. Mahian, H.S. Ahn, and S. Wongwises: Case Stud. Therm. Eng., 2021, vol. 27, p. 101238.

    Article  Google Scholar 

  11. C.H. Lee, H. Choi, D.W. Jerng, D.E. Kim, S. Wongwises, and H.S. Ahn: Int. J. Heat Mass Transf., 2019, vol. 136, pp. 1127–38.

    Article  Google Scholar 

  12. A. Kolmogorov: Dokl. Akad. Navk. SSSR, 1949, vol. 66, pp. 825–28.

    Google Scholar 

  13. C.A. Coulaloglou and L.L. Tavlarides: Chem. Eng. Sci., 1977, vol. 32(11), pp. 1289–97.

    Article  CAS  Google Scholar 

  14. H.P. Grace: Chem. Eng. Commun., 1982, vol. 14(3–6), pp. 225–77.

    Article  CAS  Google Scholar 

  15. X.Y. Fu and M. Ishii: Nucl. Eng. Des., 2003, vol. 219(2), pp. 143–68.

    Article  Google Scholar 

  16. T. Wang, J. Wang, and J. Yong: Chem. Eng. Sci., 2005, vol. 60(22), pp. 6199–209.

    Article  CAS  Google Scholar 

  17. C. Hirt and B. Nichols: J. Comput. Phys., 1981, vol. 39, pp. 201–25.

    Article  Google Scholar 

  18. S. Osher and J.A. Sethian: J. Comput. Phys., 1988, vol. 79, pp. 12–49.

    Article  Google Scholar 

  19. M. Sussman and E.G. Puckett: J. Comput. Phys., 2000, vol. 162, pp. 301–37.

    Article  CAS  Google Scholar 

  20. J.A.S. Gonçalves, M.A.M. Costa, P.R. Henrique, and J.R. Coury: J. Hazard. Mater., 2003, vol. 99, pp. 1–3.

    Article  Google Scholar 

  21. J.A.S. Gonçalves, M.A.M. Costa, and M.L. Aguiar: J. Hazard. Mater., 2004, vol. 116(1–2), pp. 147–57.

    Article  Google Scholar 

  22. W. Tauber and G. Tryggvason: Comput. Fluid Dyn. J., 2000, vol. 9, p. 594.

    Google Scholar 

  23. M. Herrmann: J. Comput. Phys., 2010, vol. 229(3), pp. 745–59.

    Article  CAS  Google Scholar 

  24. T. Ménard, S. Tanguy, and A. Berlemont: Int. J. Multiph. Flow, 2007, vol. 33(5), pp. 510–24.

    Article  Google Scholar 

  25. G. Tomar, D. Fuster, S. Zaleski, and S. Popinet: Comput. Fluids, 2010, vol. 39(10), pp. 1864–74.

    Article  Google Scholar 

  26. X.H. Qu, S. Revankar, X.N. Qi, and Q.J. Guo: Appl. Therm. Eng., 2021, vol. 195, p. 117160.

    Article  CAS  Google Scholar 

  27. G. Tomar, D. Fuster, S. Zaleski, and S. Popinet: Comput. Fluids, 2010, vol. 39, pp. 1864–74.

    Article  Google Scholar 

  28. Y. Li, Y. Huang, and K. Luo: Fuel, 2021, vol. 299, p. 120871.

    Article  CAS  Google Scholar 

  29. I. Paden, Z. Petranović, and W. Edelbauer: Comput. Fluids, 2021, vol. 222, p. 104919.

    Article  Google Scholar 

  30. R.S. Prakash, A. Sinha, and G. Tomar: Exp. Therm. Fluid Sci., 2018, vol. 93, pp. 45–56.

    Article  Google Scholar 

  31. J.F. Lou, T. Hou, and J.S. Zhu: J. Comput. Mech., 2011, vol. 28(2), pp. 210–13.

    Google Scholar 

  32. V. Radhakrishna: Int. J. Multiph. Flow, 2021, vol. 138(12), p. 103591.

    Article  CAS  Google Scholar 

  33. M. Adellberg: AIAA J., 1967, vol. 5(8), pp. 1408–15.

    Article  Google Scholar 

  34. H.Q. Wang, C.Q. Liu, and P. He: J. Combust. Sci. Technol., 1995, vol. 03, pp. 280–85.

    Google Scholar 

  35. A. Unal: Mater. Sci. Technol., 1987, vol. 3, pp. 1029–37.

    Article  CAS  Google Scholar 

  36. G. Chen, C. Fu, B.B. Xu, Y. Wu, F.S. Lien, and E. Yee: J. Aerosol Sci., 2022, vol. 165, p. 106035.

    Article  CAS  Google Scholar 

  37. W. Jin, J. Xiao, H.X. Ren, C.H. Li, Q.J. Zheng, and Z.B. Tong: Powder Technol., 2022, vol. 407, p. 117622.

    Article  CAS  Google Scholar 

  38. J. Li, C.W. Zhou, D.X. Pan, and C.S. Zhou: Comput. Math. Appl., 2019, vol. 78(4), pp. 1227–42.

    Article  Google Scholar 

  39. R.T. He, P. Yi, T. Li, X.Y. Zhou, and Y.M. Gu: At. Sprays, 2020, vol. 30(3), pp. 189–212.

    Article  Google Scholar 

  40. P. Yi, Y.P. Fu, and T. Li: At. Sprays, 2022, vol. 32(3), pp. 1–23.

    Article  Google Scholar 

  41. T. Zhou and H.Z. Li: Chem. React. Eng. Technol., 1999, vol. 1, pp. 45–52.

    Google Scholar 

  42. Z. Zou, H.Z. Li, and Q.S. Zhu: Chem. React. Eng. Technol., 2014, vol. 30(1), pp. 63–70.

    CAS  Google Scholar 

  43. K.A. Estes and I. Mudawar: Int. J. Heat Mass Transf., 1995, vol. 38(16), pp. 2985–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (51904069), the Fundamental Research Funds for the Central Universities (N2223026), and the Scientific Research Fund Project of Northeastern University at Qinhuangdao (XNY201808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Lv or Hong-liang Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, C., Sun, Mh., Chen, Xx. et al. Simulation and Analysis of Atomization Performance of a Venturi Jet Pyrolysis Reactor. Metall Mater Trans B 54, 807–822 (2023). https://doi.org/10.1007/s11663-023-02727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02727-2

Navigation