Skip to main content
Log in

Influence Mechanism of Zn on the Iron Ore-Sintering Mineralization Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Recovery of metallurgical dust by sintering inevitably incorporates Zn into the sintered ore, which can have a significant impact on the ore formation process and the quality of the resulting ore. Through miniature-sintering experiments and theoretical first-principles calculations, this paper analyzes in detail the influencing mechanism of Zn on the sintering mineralization process. The results showed that the lowest assimilation temperatures (LAT) of the reagent mixture did not change significantly with increasing ZnO content, the liquid-phase fluidity index (IFL), and the magnetite content in the sintered ore decreased, and the silico-ferrite of calcium and aluminum (SFCA) content increased. However, with increasing ZnFe2O4 content, the LAT, IFL, and magnetite contents of the reagent mixture increased, and the content of SFCA decreased. Since the Zn2+ adsorption energies of hematite and magnetite are higher than that of SFCA, Zn was mainly present in the hematite and magnetite in the sintered ore. In addition, Zn was doped into the hematite and magnetite crystals, resulting in a decrease in their crystalline strengths, so the microhardness values of the hematite and magnetite in the sintered ore gradually decreased with increasing Zn content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. N. Lobato, E.A. Villegas, and M.B. Mansur: Resour. Conserv. Recycl., 2015, vol. 102, pp. 49–57.

    Article  Google Scholar 

  2. H.A.B. Dany, F.O.C. Ignacio, L.A.B. Frédéric, K.A.B. Adib, C.A.D.E. Lucie, D.F. Thérèse, and C.A.B. Dominique: J. Hazard. Mater., 2013, vol. 250, pp. 246–55.

    Google Scholar 

  3. C. Lanzerstorfer, B. Bamberger-Strassmayr, and K. Pilz: ISIJ Int., 2015, vol. 55, pp. 758–64.

    Article  CAS  Google Scholar 

  4. P. Besta, K. Janovska, A. Samolejova, A. Berankova, and M. Hendrych: Metalurgija, 2013, vol. 52, pp. 197–200.

    CAS  Google Scholar 

  5. C. Lanzerstorfer: ISIJ Int., 2017, vol. 57, pp. 1484–89.

    Article  CAS  Google Scholar 

  6. U. Leimalm, M. Lundgren, L.S. Okvist, and B. Bjorkman: ISIJ Int., 2010, vol. 50, pp. 1560–69.

    Article  CAS  Google Scholar 

  7. K.-X. Jiao, J.-L. Zhang, Z.-J. Liu, C.-L. Chen, and F. Liu: Ironmak. Steelmak., 2017, vol. 44, pp. 344–50.

    Article  CAS  Google Scholar 

  8. K.-J. Li, J.-L. Zhang, Z.-J. Liu, T.-Q. Wang, X.-J. Ning, J.-B. Zhong, R.-S. Xu, G.-W. Wang, S. Ren, and T.-J. Yang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1581–88.

    Article  CAS  Google Scholar 

  9. H.-Y. Wang, J.-L. Zhang, Z.-J. Liu, G.-W. Wang, K.-X. Jiao, D.-D. Liu, X.-Y. Yan, and T.-J. Yang: Ironmak. Steelmak., 2018, vol. 45, pp. 560–65.

    Article  CAS  Google Scholar 

  10. Y. Deng, Q. Lyu, J.-L. Zhang, and K.-X. Jiao: ISIJ Int., 2020, vol. 60, pp. 226–32.

    Article  CAS  Google Scholar 

  11. H.-Y. He, Z.-Y. Tang, W.-B. Pei, and H.-H. Wang: Chin. J. Process Eng., 2012, vol. 12, pp. 92–96.

    CAS  Google Scholar 

  12. L.-H. Wang, X.-M. Lu, X.-J. Wei, Z. Jiang, S.-Q. Gu, Q. Gao, and Y.-Y. Huang: J. Anal. At. Spectrom., 2012, vol. 27, pp. 1667–73.

    Article  CAS  Google Scholar 

  13. Y. Kashiwaya, A. Tsubone, K. Ishii, and H. Sasamoto: ISIJ Int., 2004, vol. 44, pp. 1774–79.

    Article  CAS  Google Scholar 

  14. J. Park, R. Rajavaram, I. Suh, J. Jeon, S. Son, and J. Lee: Metall. Mater. Trans. B, 2020, vol. 51, pp. 3016–27.

    Article  CAS  Google Scholar 

  15. S.-L. Wu, G.-L. Zhang, S.-G. Chen, and B. Su: ISIJ Int., 2014, vol. 54, pp. 582–88.

    Article  CAS  Google Scholar 

  16. L.-X. Qian, Y.-D. Zhang, H.-M. Long, Q.-M. Meng, and N. Li: Ironmak. Steelmak., 2020, vol. 47, pp. 973–79.

    Article  CAS  Google Scholar 

  17. X.-B. Zhai, S.-L. Wu, H. Zhou, L.-X. Su, and X.-D. Ma: Ironmak. Steelmak., 2020, vol. 47, pp. 405–16.

    Article  CAS  Google Scholar 

  18. S.-L. Wu, X.-B. Zhai, and T.-K. Song: Metall. Res. Technol., 2019, vol. 116, p. 211.

    Article  CAS  Google Scholar 

  19. H.-P. Li, S.-L. Wu, Z.-B. Hong, W.-L. Zhang, H. Zhou, M.-Y. Kou, et al.: Processes, 2019, vol. 7, p. 931.

    Article  CAS  Google Scholar 

  20. J. Chen, E. Jak, and P.C. Hayes: Miner. Process. Extr Metall., 2021, vol. 130, pp. 181–91.

    CAS  Google Scholar 

  21. M. Pownceby, N.A.S. Webster, J.R. Manuel, and N. Ware: Miner. Process. Extr Metall., 2016, vol. 125, pp. 140–48.

    Article  CAS  Google Scholar 

  22. W. Wang, X.-H. Chen, R.-S. Xu, J. Li, W.-J. Shen, and S.-P. Wang: J. Iron Steel Res. Int., 2020, vol. 27, pp. 367–79.

    Article  Google Scholar 

  23. D.-W. Yang, W. Wang, J.-X. Li, R.-S. Xu, X.-Z. Wang, and G. Wang: Metall. Mater. Trans. B, 2020, vol. 51, pp. 776–85.

    Article  CAS  Google Scholar 

  24. W. Wang, D.-W. Yang, Z.-L. Ouyang, R.-S. Xu, and M.-M. Song: Metall Mater. Trans. B, 2019, vol. 50, pp. 678–87.

    Article  CAS  Google Scholar 

  25. W. Wang, M. Deng, R.-S. Xu, W.-B. Xu, Z.-L. Ouyang, X.-B. Huang, and Z.L. Xue: J. Iron Steel Res. Int., 2017, vol. 24, pp. 998–1006.

    Article  Google Scholar 

  26. I. Katayama, J. Shibata, M. Aoki, and Z. Kozuka: J. Jpn. Inst. Met., 1976, vol. 40, pp. 932–37.

    Article  CAS  Google Scholar 

  27. X.-Z. Wang, W. Wang, H.-P. Li, Q. Zhang, D.-W. Yang, and G. Lin: Iron Steel, 2021, vol. 56, pp. 31–37.

    CAS  Google Scholar 

  28. G.-L. Zhang, S.-L. Wu, S.-G. Chen, B. Su, Z.-G. Que, and C.-G. Hou: Int. J. Miner. Metall. Mater., 2014, vol. 21, pp. 962–68.

    Article  CAS  Google Scholar 

  29. S.-L. Wu, Y.-D. Pei, H. Chen, P. Peng, and F. Yang: J. Univ. Sci. Technol. Beijing, 2008, vol. 10, pp. 1095–1100.

    Google Scholar 

  30. X. Ding and X.-M. Guo: Iron Steel, 2015, vol. 50, pp. 33–38.

    CAS  Google Scholar 

  31. Y.-H. Yang and N. Standish: ISIJ Int., 1991, vol. 31, pp. 468–77.

    Article  CAS  Google Scholar 

  32. S. Nicol, S.Y. Cheng, E. Jak, and P.C. Hayes: ISIJ Int., 2020, vol. 60, pp. 2659–68.

    Article  CAS  Google Scholar 

  33. Y.-D. Du, W.-K. Chen, Y.-F. Zhang, and X. Guo: J. Nat. Gas Chem., 2011, vol. 20, pp. 60–64.

    Article  CAS  Google Scholar 

  34. H. Zhang, S.-L. Shang, Y. Wang, A. Saengdeejing, L.-Q. Chen, and Z.-K. Liu: Acta Mater., 2010, vol. 58, pp. 4012–18.

    Article  CAS  Google Scholar 

  35. Y.-Y. Dai, L. Yang, S.-M. Peng, X.-G. Long, X.-S. Zhou, and X.-T. Zu: Acta Phys. Sin., 2012, vol. 61, 108801.

    Article  Google Scholar 

  36. K. Kawai and T. Tsuchiya: Am. Mineral., 2012, vol. 97, pp. 305–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (51974212).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Heng Zheng.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there were no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wang, W., Yang, D. et al. Influence Mechanism of Zn on the Iron Ore-Sintering Mineralization Process. Metall Mater Trans B 54, 550–561 (2023). https://doi.org/10.1007/s11663-022-02708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02708-x

Navigation