Skip to main content
Log in

Research progress on multiscale structural characteristics and characterization methods of iron ore sinter

  • Review
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

At present, blast furnace ironmaking is still the main process for producing molten iron, and sinters are the main raw material for blast furnace ironmaking. A sinter with good metallurgical performance can not only ensure smooth operation of the blast furnace but also reduce the blast furnace fuel ratio and increase the molten iron production. Structure is the most important factor affecting the metallurgical properties of the sinter. Thus, the research progress of sinter pore and mineral phase structures was reviewed and the mechanism by which they influence sinter properties was expounded. Multiscale characterization methods for the sinter and their advantages and disadvantages were introduced, and the future research direction of sinter was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M.I. Pownceby, N.A.S. Webster, J.R. Manuel, N. Ware, Trans. Inst. Min. Metall. Sect. C 125 (2016) 140–148.

    Google Scholar 

  2. J.M.F. Clout, J.R. Manuel, Powder Technol. 130 (2003) 393–399.

    Google Scholar 

  3. N.J. Bristow, C.E. Loo, ISIJ Int. 32 (1992) 819–828.

    Google Scholar 

  4. X.L. Wang, Iron and steel metallurgy (ironmaking segment), Metallurgical Industry Press, Beijing, China, 1991.

    Google Scholar 

  5. T. Umadevi, A.V. Deodar, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 80 (2009) 686–692.

    Google Scholar 

  6. V. Shatokha, I. Korobeynikov, E. Maire, L. Grémillard, J. Adrien, Ironmak. Steelmak. 37 (2010) 313–319.

    Google Scholar 

  7. B.G. Ellis, C.E. Loo, D. Witchard, Ironmak. Steelmak. 34 (2007) 99–108.

    Google Scholar 

  8. D. Debrincat, C.E. Loo, M.F. Hutchens, ISIJ Int. 44 (2004) 1308–1317.

    Google Scholar 

  9. Y.H. Yang, N. Standish, ISIJ Int. 31 (1991) 468–477.

    Google Scholar 

  10. T. Matsumura, T. Maki, S. Amano, M. Sakamoto, N. Iwasaki, ISIJ Int. 49 (2009) 618–624.

    Google Scholar 

  11. E.A. Mousa, Ironmak. Steelmak. 41 (2014) 418–429.

    Google Scholar 

  12. R.P. Bhagat, U.S. Chattoraj, S.K. Sil, ISIJ Int. 46 (2006) 1728–1730.

    Google Scholar 

  13. W.X. Zhang, Y.L. Huang, Z.W. Zhang, Modern Mining (2018) No. 7, 118–121, 125.

  14. H. Zhou, M. Zhou, M. Cheng, X. Guo, Y. Li, P. Ma, K. Cen, Appl. Therm. Eng. 127 (2017) 508–516.

    Google Scholar 

  15. S. Kasama, T. Inazumi, T. Nakayasu, ISIJ Int. 34 (1994) 562–569.

    Google Scholar 

  16. Y.Q. Bai, S.S. Cheng, Sintering Pelletizing 37 (2012) No. 1, 1–5.

    Google Scholar 

  17. A. Dehghan-Manshadi, J. Manuel, S. Hapugoda, N. Ware, ISIJ Int. 54 (2014) 2189–2195.

    Google Scholar 

  18. Y.Q. Bai, S.S. Cheng, H.B. Zhao, S.F. Huo, Sintering Pelletizing 36 (2011) No. 2, 1–6.

    Google Scholar 

  19. R.P. Bhagat, U.S. Chattoraj, M.C. Goswami, D.P. Singh, S.K. Sil, Steel Res. Int. 78 (2007) 451–454.

    Google Scholar 

  20. S. Jursova, P. Pustejovska, S. Brozova, Alexandria Eng. J. 57 (2018) 1657–1664.

    Google Scholar 

  21. G.L. Zhang, S.L. Wu, B. Su, Z.G. Que, C.G. Hou, Y. Jiang, Int. J. Miner. Metall. Mater. 22 (2015) 553–561.

    Google Scholar 

  22. T. Umadevi, P. Kumar, N.F. Lobo, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 80 (2009) 709–716.

    Google Scholar 

  23. Q.J. Zhang, Y.Z. Zhang, Y.L. Li, L.M. Jiang, Q. Liu, J. Iron Steel Res. 25 (2013) No. 11, 6–10.

    Google Scholar 

  24. H. Kokubu, T. Kodama, H. Itaya, Y. Oguchi, Trans. Iron Steel Inst. Jpn. 26 (1986) 182–185.

    Google Scholar 

  25. Y. Chen, D.X. Li, Bull. Chin. Ceram. Soc. 25 (2006) No. 4, 198–201.

    Google Scholar 

  26. G.B. Qiu, X.W. Lv, C.G. Bai, Q.Y. Huang, S.L. Liu, W.J. Niu, Metall. Anal. 28 (2008) No. 8, 7–11.

    Google Scholar 

  27. X.H. Fan, Z.H. Zhao, X.L. Chen, G. Min, Y. Wang, J. Cent. South Univ. (Sci. Technol.) 42 (2011) 2893–2897.

    Google Scholar 

  28. T. Harvey, T. Honeyands, G. Evans, B. Godel, D. O’Dea, Powder Technol. 339 (2018) 81–89.

    Google Scholar 

  29. K. Nushiro, N. Oyama, K. Igawa, ISIJ Int. 39 (1999) 1239–1244.

    Google Scholar 

  30. I.U. Bhuiyan, J. Mouzon, F. Forsberg, S.P.E. Forsmo, M. Sjödahl, J. Hedlund, Powder Technol. 233 (2013) 312–318.

    Google Scholar 

  31. W. Wang, M. Deng, R.S. Xu, W.B. Xu, Z.L. Ouyang, X.B. Huang, Z.L. Xue, J. Iron Steel Res. Int. 24 (2017) 998–1006.

    Google Scholar 

  32. W. Wang, W.B. Xu, H.Y. Zhu, Z.L. Ouyang, M. Deng, Z.L. Xue, J. Iron Steel Res. 28 (2016) No. 11, 6–11.

    Google Scholar 

  33. R. Xu, W. Wang, W. Chen, B. Jia, Z. Xu, High Temp. Mater. Processes 38 (2019) 101–112.

    Google Scholar 

  34. W. Wang, B. Dai, R. Xu, J. Schenk, J. Wang, Z. Xue, Steel Res. Int. 88 (2017) 1700063.

    Google Scholar 

  35. P. Pourghahramani, E. Altin, M.R. Mallembakam, W. Peukert, E. Forssberg, Powder Technol. 186 (2008) 9–21.

    Google Scholar 

  36. M. Deng, The three-dimensional mineral characteristics of sinter ore and its influence on metallurgical properties, Wuhan University of Science and Technology, Wuhan, China, 2017.

    Google Scholar 

  37. Y.M. Chen, Microstructure of the sinter and pellet, Central South University Press, Changsha, China, 2011.

    Google Scholar 

  38. T. Umadevi, U.K. Bandopadhyay, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 81 (2010) 419–425.

    Google Scholar 

  39. X.M. Guo, L. Zhu, Q. Li, H.B. Shen, M.S. Zhou, Iron and Steel 42 (2007) No. 1, 17–19, 49.

  40. W.G. Mumme, J.M.F. Clout, R.W. Gable, Neues. Jb. Miner. Abh 173 (1998) 93–117.

    Google Scholar 

  41. W.G. Mumme, Neues. Jb. Miner. Abh 178 (2003) 307–335.

    Google Scholar 

  42. L. Xiong, Z. Peng, F. Gu, L. Ye, L. Wang, M. Rao, Y. Zhang, G. Li, T. Jiang, Powder Technol. 340 (2018) 131–138.

    Google Scholar 

  43. T. Umadevi, A. Brahmacharyulu, A.K. Roy, P.C. Mahapatra, M. Prabhu, M. Ranjan, ISIJ Int. 51 (2011) 922–929.

    Google Scholar 

  44. M.M. Hessien, Y. Kashiwaya, K. Ishii, M.I. Nasr, A.A. El-Geassy, Ironmak. Steelmak. 35 (2008) 191–204.

    Google Scholar 

  45. T. Umadevi, A.V. Deodhar, S. Kumar, C.S. Gururaj Prasad, M. Ranjan, Ironmak. Steelmak. 35 (2008) 567–574.

  46. M. Sinha, S.H. Nistala, S. Chandra, T.R. Mankhand, A.K. Ghose, Ironmak. Steelmak. 44 (2017) 100–107.

    Google Scholar 

  47. T. Umadevi, P.C. Mahapatra, M. Prabhu, Trans. Inst. Min. Metall. Sect. C 122 (2013) 238–248.

    Google Scholar 

  48. S.C. Panigrahy, P. Verstraeten, J. Dilewijns, Metall. Trans. B 15 (1984) 23–32.

    Google Scholar 

  49. U.S. Yadav, B.D. Pandey, B.K. Das, D.N. Jena, Ironmak. Steelmak. 29 (2002) 91–95.

    Google Scholar 

  50. X.H. Fan, W.Q. Li, M. Gan, X.L. Chen, L.S. Yuan, Z.Y. Ji, Z.Y. Yu, X.X. Huang, D. Su, J. Cent. South Univ. (Sci. Technol.) 43 (2012) 3325–3330.

    Google Scholar 

  51. M. Zhou, S.T. Yang, T. Jiang, X.X. Xue, Ironmak. Steelmak. 42 (2015) 217–224.

    Google Scholar 

  52. Y.G. Gong, G. Wang, H. Li, J.S. Wang, Q.G. Xue, Min. Metall. Eng. 35 (2015) No. 1, 76–79.

    Google Scholar 

  53. N.V.Y. Scarlett, M.I. Pownceby, I.C. Madsen, A.N. Christensen, Metall. Mater. Trans. B 35 (2004) 929–936.

    Google Scholar 

  54. Q.J. Zhang, L.M. Jiang, W.L. Mo, Y.Z. Zhang, Adv. Mater. Res. 391–392 (2011) 269–273.

    Google Scholar 

  55. M.G. He, Iron and Steel 51 (2016) No. 5, 9–16.

    Google Scholar 

  56. T. Murakami, T. Kodaira, E. Kasai, ISIJ Int. 55 (2015) 1181–1187.

    Google Scholar 

  57. D. Yang, W. Wang, R. Xu, J. Li, M. Song, Metals 9 (2019) 152.

    Google Scholar 

  58. H. Krztoń, J. Stecko, Z. Kania, Acta Phys. Pol. A 130 (2016) 1147–1150.

    Google Scholar 

  59. T. Takayama, R. Murao, M. Kimura, ISIJ Int. 58 (2018) 1069–1078.

    Google Scholar 

  60. M. Deng, W. Wang, R.S. Xu, W.K. Lin, Z.Q. Zhang, Y. Huang, Iron Steel Vanadium Titanium 38 (2017) No. 2, 104–111.

    Google Scholar 

  61. H.W. Guo, B.X. Su, Z.L. Bai, J.L. Zhang, X.Y. Li, F. Liu, ISIJ Int. 54 (2014) 1222–1227.

    Google Scholar 

  62. G.B. Qiu, X.W. Lv, C.G. Bai, L.Y. Wen, Q.Y. Huang, D. Liang, Metall. Anal. 28 (2008) No. 5, 5–9.

    Google Scholar 

  63. F. Nellros, M.J. Thurley, Miner. Eng. 24 (2011) 1525–1531.

    Google Scholar 

  64. L. Zhu, J. Jilin Inst. Chem. Technol. 24 (2007) No. 2, 81–84.

    Google Scholar 

  65. Y. Sasaki, M. Iguchi, M. Hino, Key Eng. Mater. 326–328 (2006) 237–240.

    Google Scholar 

  66. S. Hapugoda, L. Lu, E. Donskoi, J. Manuel, Trans. Inst. Min. Metall. Sect. C 125 (2016) 156–164.

    Google Scholar 

  67. H.Q. Sun, Y.N. Shi, M.X. Zhang, K. Lu, Acta Mater. 55 (2007) 975–982.

    Google Scholar 

  68. T. Waitz, V. Kazykhanov, H.P. Karnthaler, Acta Mater. 52 (2004) 137–147.

    Google Scholar 

  69. S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, J. Banhart, Acta Mater. 59 (2011) 182–190.

    Google Scholar 

  70. W. Wang, D. Yang, Z. Ouyang, R. Xu, M. Song, Metall. Mater. Trans. B 50 (2019) 678–687.

    Google Scholar 

  71. S. Samal, B.K. Mohapatra, P.S. Mukherjee, S.K. Chatterjee, J. Alloy. Compd. 474 (2009) 484–489.

    Google Scholar 

  72. G. Yang, J. Heilongjiang Univ. Technol. (Comprehensive Ed.) (2006) No. 6, 44–45.

  73. D.K.G. De Boer, R. Klockenkaemper, Trends Anal. Chem. 15 (1996) VII.

  74. N.V.Y. Scarlett, I.C. Madsen, M.I. Pownceby, A.N. Christensen, J. Appl. Cryst. 37 (2004) 362–368.

    Google Scholar 

  75. W.H. Bragg, W.L. Bragg, Proc. R. Soc. Lond. A 88 (1913) 428–438.

    Google Scholar 

  76. H.M. Rietveld, Acta Crystallogr. 22 (1967) 151–152.

    Google Scholar 

  77. U. König, T. Degen, N. Norberg, Powder Diffr. 29 (2014) No. S1, S78–S83.

    Google Scholar 

  78. Z.L. Ouyang, Effect of SiO2 on microstructure and reducation properties of calcium ferrate, Wuhan University of Science and Technology, Wuhan, China, 2018.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (51474164, U1760101 and 51704216).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-sheng Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, Xh., Xu, Rs. et al. Research progress on multiscale structural characteristics and characterization methods of iron ore sinter. J. Iron Steel Res. Int. 27, 367–379 (2020). https://doi.org/10.1007/s42243-020-00374-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00374-4

Keywords

Navigation