Skip to main content
Log in

Microstructural Characterization of an ERNiCrMo-3 and Grey Cast Iron Interface Obtained via TIG Welding

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

For some industrial applications, nickel-based superalloys are surface welded onto grey cast iron to improve wear and corrosion resistance. In these circumstances, different chemical compositions and welding techniques result in the formation of distinct phases. Therefore, a comprehensive investigation of the microstructural evolution is essential for new developments. Here, an ERNiCrMo-3 alloy was deposited on grey cast iron using Tungsten Inert Gas (TIG) welding under controlled parameters. The interface microstructure was characterized via light and scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, X-ray diffraction, thermodynamic calculation, and microhardness measurements. After cooling, multiphase regions were obtained and investigated. At the fusion zone, a new solidification path was proposed: L→ L+γ→ L+γ+M7C3→ γ+M7C3+NbC+Mo2C→ γ+M7C3+NbC+Mo2C+Laves. The high carbon content with the alloying elements in the coat led to the formation of the eutectic inter-dendritic γ+M7C3, besides the precipitation of Laves, NbC, and Mo2C. We found tempered martensite, retained austenite, and carbides in the partially melted zone, including NbC, Fe3C, and (Ti, V, Nb, n)xCy. In the heat-affected zone, a needle martensite matrix with graphite flakes was obtained, as well as carbides. The presence of martensite combined with different carbides resulted in hardness values up to 750 HV (0.3) in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Graf, U. Tetzlaff, G. Biscaia de Souza, and A. Scheid: Mater. Res., 2019, vol. 22(1), pp. 1–7. https://doi.org/10.1590/1980-5373-MR-2018-0502.

    Article  Google Scholar 

  2. J. Huang, S. Liu, S. Yu, L. An, X. Yu, D. Fan, and F. Yang: J. Manuf. Process., 2020, vol. 56, pp. 106–15. https://doi.org/10.1016/j.jmapro.2020.03.058.

    Article  Google Scholar 

  3. F. Fernandes, B. Lopes, A. Cavaleiro, A. Ramalho, and A. Loureiro: Surf. Coat. Technol., 2011, vol. 205(16), pp. 4094–4106. https://doi.org/10.1016/j.surfcoat.2011.03.008.

    Article  CAS  Google Scholar 

  4. Y. Li, S. Dong, S. Yan, X. Liu, E. Li, P. He, and B. Xu: Opt. Laser Technol., 2019, vol. 112, pp. 30–38. https://doi.org/10.1016/j.optlastec.2018.10.055.

    Article  CAS  Google Scholar 

  5. R. Sebastian, A.K. Singh, M. Paliwal, and A. Gautam: Prog. Addit. Manuf., 2019, vol. 4(2), pp. 131–42. https://doi.org/10.1007/s40964-018-0066-y.

    Article  Google Scholar 

  6. F. Fernandes, T. Polcar, A. Loureiro, and A. Cavaleiro: Surf. Coat. Technol., 2015, vol. 281, pp. 11–19. https://doi.org/10.1016/j.surfcoat.2015.09.034.

    Article  CAS  Google Scholar 

  7. M. Pouranvari: Mater. Des., 2010, vol. 31(7), pp. 3253–58. https://doi.org/10.1016/j.matdes.2010.02.034.

    Article  CAS  Google Scholar 

  8. F. Fernandes, A. Cavaleiro, and A. Loureiro: Surf. Coat. Technol., 2012, vol. 207, pp. 196–203. https://doi.org/10.1016/j.surfcoat.2011.03.008.

    Article  CAS  Google Scholar 

  9. S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang: J. Mater. Sci. Technol., 2015, vol. 31(9), pp. 946–52. https://doi.org/10.1016/j.jmst.2014.09.020.

    Article  CAS  Google Scholar 

  10. Y. Zhou, J. Zhang, Z. Xing, H. Wang, and Z. Lv: Surf. Coat. Technol., 2019, vol. 361, pp. 270–79. https://doi.org/10.1016/j.surfcoat.2018.12.055.

    Article  CAS  Google Scholar 

  11. C.P. Alvarães, F.C. Albuquerque Madalena, L.F. Guimarães de Souza, J.C. Ferreira Jorge, L. Sales Araújo, and M. Campolina Mendez: Rev. Mater., 2019, vol. 24(1), pp. 1–12. https://doi.org/10.1590/s1517-707620190001.0627.

    Article  CAS  Google Scholar 

  12. B. Heider, M. Oeschsner, T. Engler, J. Ellermeier, U. Reisgen, R. Sharma, E. Zokoll, and E. Gonzalez: Materwiss. Werksttech., 2019, vol. 50(10), pp. 1165–80. https://doi.org/10.1007/s11666-020-01003-y.

    Article  CAS  Google Scholar 

  13. U. Reisgen, R. Sharma, S. Wieland, E. Gonzalez, M. Oechsner, G. Andersohn, J. Ellermeier, M. Siebers, and B. Heider: Materwiss. Werksttech., 2018, vol. 49(12), pp. 1520–37. https://doi.org/10.1002/mawe.201800151.

    Article  CAS  Google Scholar 

  14. R. Chaudhari, P.K. Loharkar, and A. Ingle: IOP Conf. Ser., 2020, vol. 810, pp. 1–8. https://doi.org/10.1088/1757-899X/810/1/012006.

    Article  Google Scholar 

  15. M. Eroğlu and N. Özdemir: Surf. Coat. Technol., 2002, vol. 154(2), pp. 209–17. https://doi.org/10.1016/S0257-8972(01)01712-1.

    Article  Google Scholar 

  16. M. Cieslak: Weld. J., 1991, vol. 70(2), pp. 49–56.

    Google Scholar 

  17. J. N. DuPont, J. C. Lippold, and S. D. Kiser: Welding Metallurgy and Weldability of Nickel-Base Alloys, 1st edn. Wiley, New Jersey. 2009, pp. 70–73 and pp. 185–87.

  18. M.J. Perricone and J.N. DuPont: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1267–89. https://doi.org/10.1007/s11661-006-1078-7.

    Article  CAS  Google Scholar 

  19. G. Tianyuan and C. Wang: Mater. Sci., 2019, vol. 25(3), pp. 252–58. https://doi.org/10.5755/j01.ms.25.3.19173.

    Article  Google Scholar 

  20. D. Verdi, C.J. Múnez, M.A. Garrido, and P. Poza: Int. J. Adv. Manuf. Technol., 2017, vol. 92(5), pp. 3033–42. https://doi.org/10.1007/s00170-017-0372-4.

    Article  Google Scholar 

  21. G. Marchese, X. Garmendia Colera, F. Calignano, M. Lorusso, S. Biamino, P. Minetola, and D. Manfredi: Adv. Eng. Mater., 2017, vol. 19(3), pp. 1–9.

    Article  Google Scholar 

  22. M. Rombouts, G. Maes, M. Mertens, and W. Hendrix: J. Laser Appl., 2012, vol. 24(5), pp. 052007. https://doi.org/10.2351/1.4757717

  23. M. Tumer, T. Karahan, and T. Mert: Weld. World, 2020, vol. 64(1), pp. 21–35. https://doi.org/10.1007/s40194-019-00825-x.

    Article  CAS  Google Scholar 

  24. F. Xu, Y. Lv, Y. Liu, F. Shu, P. He, and B. Xu: J. Mater. Sci. Technol., 2013, vol. 29(5), pp. 480–88. https://doi.org/10.1016/j.jmst.2013.02.010.

    Article  CAS  Google Scholar 

  25. R.I. Badiger, S. Narendranath, M.S. Srinath, and A.M. Hebbale: Trans Indian Inst Met, 2019, vol. 72(3), pp. 811–24. https://doi.org/10.1007/s12666-018-1537-z.

    Article  CAS  Google Scholar 

  26. R. Arabi Jeshvaghani, M. Jaberzadeh, H. Zohdi, and M. Shamanian: Mater. Des., 2014, vol. 54, pp. 491–97. https://doi.org/10.1016/j.matdes.2013.08.059.

    Article  CAS  Google Scholar 

  27. M. Shamanian, S.M.R.M. Abarghouie, and S.R.M. Pour: Mater. Des., 2010, vol. 31(6), pp. 2760–66. https://doi.org/10.1016/j.matdes.2010.01.017.

    Article  CAS  Google Scholar 

  28. C.C. Silva, H.C. de Miranda, M.F. Motta, J.P. Farias, C.R.M. Afonso, and A.J. Ramirez: J. Mater. Res. Technol., 2013, vol. 2, pp. 228–37. https://doi.org/10.1016/j.jmrt.2013.02.008.

    Article  CAS  Google Scholar 

  29. S.K. Rai, A. Kumar, V. Shankar, T. Jayakumar, K. Bhanu Sankara Rao, and B. Raj: Scr. Mater., 2004, vol. 51(1), pp. 59–63. https://doi.org/10.1016/j.scriptamat.2004.03.017.

    Article  CAS  Google Scholar 

  30. R.B. Li, M. Yao, W.C. Liu, and X.C. He: Scr. Mater., 2002, vol. 46(9), pp. 635–38. https://doi.org/10.1016/S1359-6462(02)00041-6.

    Article  CAS  Google Scholar 

  31. S.S. Prabu, K.D. Ramkumar, and N. Arivazhagan: IOP Conf. Ser. Mater. Sci. Eng., 2017, vol. 263, pp. 1–11. https://doi.org/10.1088/1757-899X/263/6/062073.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the AWARE Center (Bavarian Center for Applied Research and Technology with Latin America) for providing support to international research networks and interdisciplinary cooperation. It strengthens the cooperation between the Technische Hochschule Ingolstadt (THI) and the Federal University of Santa Catarina (UFSC). In addition, the authors thank Christian Biber, a laboratory assistant from the THI, for the technical support during the analyses.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Benedet Dutra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutra, G.B., Tetzlaff, U., Cunha, T.V. et al. Microstructural Characterization of an ERNiCrMo-3 and Grey Cast Iron Interface Obtained via TIG Welding. Metall Mater Trans B 53, 2534–2546 (2022). https://doi.org/10.1007/s11663-022-02549-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02549-8

Navigation