Skip to main content
Log in

Investigation of the interface between SLM processed nickel alloy on a cast iron substrate

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Recent advances in the field of additive manufacturing offers significant flexibility in shaping and processing of materials. These techniques have been extensively studied for the manufacturing of entire component, typically using powder of a single composition. In this study, we explore the use of selective laser melting technique for the processing of an existing component. The Inconel 625 powder was printed onto the cast iron coupons using selective laser melting. These processed coupons were then characterised to study the interface between the Inconel 625 layer and the cast iron substrate. The microstructure near the interface region transitioned from small equiaxed grains to columnar morphology. The chemical intermixing between the Inconel 625 and cast iron was mostly confined within the first layer of Inconel 625. No new phases were observed at or near the interface which is consistent with the predictions from the thermodynamic calculations that was carried out using the FactSage® software and typical process parameters and composition data. The microhardness measurements at and near the interface region showed the highest hardness values at the interface which can be related to the fine-grained microstructure and solid-solution strengthening of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yang SS, Ngiam HY, Ong SK, Nee AYC (2015) The impact of automotive product remanufacturing on environmental performance. Proc CIRP 29:774–779. https://doi.org/10.1016/J.PROCIR.2015.01.017

    Article  Google Scholar 

  2. Zárubová N, Kraus V, Čermák J (1992) Mechanisms of phase transformations during laser treatment of grey cast iron. J Mater Sci 27(13):3487–3496. https://doi.org/10.1007/BF01151824

    Article  Google Scholar 

  3. Marya M, Singh V, Hascoet J-Y, Marya S (2018) A Metallurgical investigation of the direct energy deposition surface repair of ferrous alloys. J Mater Eng Perform 27(2):813–824. https://doi.org/10.1007/s11665-017-3117-5

    Article  Google Scholar 

  4. Zhao S, Li SJ, Wang SG, Hou WT, Li Y, Zhang LC, Hao YL, Yang R, Misra RDK, Murr LE (2018) Compressive and fatigue behavior of functionally graded Ti-6Al-4V meshes fabricated by electron beam melting. Acta Mater 150:1–15. https://doi.org/10.1016/j.actamat.2018.02.060

    Article  Google Scholar 

  5. Leino M, Pekkarinen J, Soukka R (2016) The role of laser additive manufacturing methods of metals inrepair, refurbishment and remanufacturing—enabling circular economy. Phy Procedia 83:752–760. https://doi.org/10.1016/j.phpro.2016.08.077

    Article  Google Scholar 

  6. Steinhilper R, Weiland F (2015) Exploring new horizons for remanufacturing an up-to-date overview ofindustries, products and technologies. Procedia CIRP 29:769–773. https://doi.org/10.1016/j.procir.2015.02.041

    Article  Google Scholar 

  7. Morrow WR, Qi H, Kim I, Mazumder J, Skerlos SJ (2007) Environmental aspects of laser-based and conventional tool and die manufacturing. J Clean Prod 15(10):932–943. https://doi.org/10.1016/j.jclepro.2005.11.030

    Article  Google Scholar 

  8. Xu M, Li J, Jiang J, Li B (2015) Influence of powders and process parameters on bonding shear strength and micro hardness in laser cladding remanufacturing. Proc CIRP 29:804–809. https://doi.org/10.1016/J.PROCIR.2015.02.088

    Article  Google Scholar 

  9. Raju R, Duraiselvam M, Petley V, Verma S, Rajendran R (2015) Microstructural and mechanical characterization of Ti6Al4V refurbished parts obtained by laser metal deposition. Mater Sci Eng A 643:64–71. https://doi.org/10.1016/j.msea.2015.07.029

    Article  Google Scholar 

  10. Wilson JM, Piya C, Shin YC, Zhao F, Ramani K (2014) Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis. J Clean Prod 80:170–178. https://doi.org/10.1016/j.jclepro.2014.05.084

    Article  Google Scholar 

  11. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metaladditive manufacturing. Int Mater Rev 61(5):315–360. https://doi.org/10.1080/09506608.2015.1116649

    Article  Google Scholar 

  12. Němeček S, Fidler L, Fišerová P (2014) Corrosion resistance of laser clads of Inconel 625 and Metco 41C. Phys Proc 56:294–300. https://doi.org/10.1016/J.PHPRO.2014.08.174

    Article  Google Scholar 

  13. Acharya R, Das S (2015) Additive manufacturing of IN100 superalloy through scanning laser epitaxy for turbine engine hot-section component repair: process development, modeling, microstructural characterization, and process control. Metall Mater Trans A 46(9):3864–3875. https://doi.org/10.1007/s11661-015-2912-6

    Article  Google Scholar 

  14. Bi G, Gasser A (2011) Restoration of nickel-base turbine blade knife-edges with controlled laser aided additive manufacturing. Phys Proc 12:402–409. https://doi.org/10.1016/j.phpro.2011.03.051

    Article  Google Scholar 

  15. Kim HI, Park HS, Koo JM, Seok CS, Yang SH, Kim MY (2012) Evaluation of welding characteristics for manual overlay and laser cladding materials in gas turbine blades. J Mech Sci Technol 26(7):2015–2018. https://doi.org/10.1007/s12206-012-0505-5

    Article  Google Scholar 

  16. Dong S, Xu B, Wang Z, Ma Y, Liu W (2007) Laser remanufacturing technology and its applications. In: Deng S, Matsunawa A, Zhu X (eds) International Society for Optics and Photonics, pp 68251N–68251N. https://doi.org/10.1117/12.782335

  17. Hinojos A, Mireles J, Reichardt A, Frigola P, Hosemann P, Murr LE, Wicker RB (2016) Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology. Mater Des 94:17–27. https://doi.org/10.1016/J.MATDES.2016.01.041

    Article  Google Scholar 

  18. Marchese G, Garmendia Colera X, Calignano F, Lorusso M, Biamino S, Minetola P, Manfredi D (2017) Characterization and comparison of Inconel 625 processed by selective laser melting and laser metal deposition. Adv Eng Mater. https://doi.org/10.1002/adem.201600635

    Google Scholar 

  19. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/J.ACTAMAT.2016.07.019

    Article  Google Scholar 

  20. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform. 23(6):1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  21. Angrish AA Critical analysis of additive manufacturing technologies for aerospace applications. In: 2014/03//. IEEE, pp 1–6. https://doi.org/10.1109/AERO.2014.6836456

  22. Arias-González F, del Val J, Comesaña R, Penide J, Lusquiños F, Quintero F, Riveiro A, Boutinguiza M, Pou J (2016) Fiber laser cladding of nickel-based alloy on cast iron. Appl Surf Sci 374:197–205. https://doi.org/10.1016/J.APSUSC.2015.11.023

    Article  Google Scholar 

  23. Ocelík V, de Oliveira U, de Boer M, de Hosson JTM (2007) Thick Co-based coating on cast iron by side laser cladding: analysis of processing conditions and coating properties. Surf Coat Technol 201(12):5875–5883

    Article  Google Scholar 

  24. Pouranvari M (2010) On the weldability of grey cast iron using nickel based filler metal. Mater Des 31(7):3253–3258. https://doi.org/10.1016/J.MATDES.2010.02.034

    Article  Google Scholar 

  25. Angus HT (1976) Cast iron: physical and engineering properties. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-408-70933-0.50008-6

    Google Scholar 

  26. Radzikowska JM (2004) Metallography and microstructures of cast iron. ASM Handb Metallogr Microstruct 9:565–587. https://doi.org/10.1361/asmhba0003765

    Google Scholar 

  27. Li S, Wei Q, Shi Y, Zhu Z, Zhang D (2015) Microstructure characteristics of Inconel 625 superalloy manufactured by selective laser melting. J Mater Sci Technol 31(9):946–952. https://doi.org/10.1016/j.jmst.2014.09.020

    Article  Google Scholar 

  28. Shankar V, Bhanu Sankara Rao K, Mannan SL (2001) Microstructure and mechanical properties of Inconel 625 superalloy. J Nucl Mater 288(2):222–232. https://doi.org/10.1016/S0022-3115(00)00723-6

    Article  Google Scholar 

  29. Paul CP, Ganesh P, Mishra SK, Bhargava P, Negi J, Nath AK (2007) Investigating laser rapid manufacturing for Inconel-625 components. Opt Laser Technol 39(4):800–805. https://doi.org/10.1016/j.optlastec.2006.01.008

    Article  Google Scholar 

  30. Kreitcberg A, Brailovski V, Turenne S (2017) Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion. Mater Sci Eng A 689:1–10. https://doi.org/10.1016/j.msea.2017.02.038

    Article  Google Scholar 

  31. Li C, White R, Fang XY, Weaver M, Guo YB (2017) Microstructure evolution characteristics of Inconel 625 alloy from selective laser melting to heat treatment. Mater Sci Eng A 705:20–31. https://doi.org/10.1016/J.MSEA.2017.08.058

    Article  Google Scholar 

  32. Li C, Guo YB, Zhao JB (2017) Interfacial phenomena and characteristics between the deposited material and substrate in selective laser melting Inconel 625. J Mater Process Technol 243:269–281. https://doi.org/10.1016/J.JMATPROTEC.2016.12.033

    Article  Google Scholar 

  33. Hack H, Link R, Knudsen E, Baker B, Olig S (2017) Mechanical properties of additive manufactured nickel alloy 625. Addit Manuf 14:105–115. https://doi.org/10.1016/J.ADDMA.2017.02.004

    Article  Google Scholar 

  34. Anam A, Dilip JJS, Pal D, Stucker B (2014) Effect of scan pattern on the microstructural evolution of inconel 625 during selective laser melting. In: International solid freeform fabrication symposium—an additive manufacturing conference, pp 363–376. https://doi.org/10.13140/2.1.1256.6089

  35. Luft A, Reitzenstein W, Zárubová N, Cermak J (1991) Investigations into laser beam remelt hardening of cast iron. Weld Cut 3:E44–E46

    Google Scholar 

  36. Verdi D, Garrido MA, Munez CJ, Poza P (2014) Mechanical properties of Inconel 625 laser cladded coatings: depth sensing indentation analysis. Mater Sci Eng A 598:15–21. https://doi.org/10.1016/j.msea.2014.01.026

    Article  Google Scholar 

  37. Gu D, Shi Q, Lin K, Xi L (2018) Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting. Addit Manuf. https://doi.org/10.1016/j.addma.2018.05.019

    Google Scholar 

  38. Kurz W, Bezençon C, Gäumann M (2001) Columnar to equiaxed transition in solidification processing. Sci Technol Adv Mater 2(1):185–191. https://doi.org/10.1016/S1468-6996(01)00047-X

    Article  Google Scholar 

  39. Bale CW, Bélisle E, Chartrand P, Decterov SA, Eriksson G, Gheribi AE, Hack K, Jung IH, Kang YB, Melançon J, Pelton AD, Petersen S, Robelin C, Sangster J, Spencer P, Van Ende MA (2016) FactSage thermochemical software and databases, 2010–2016. Calphad Comput Coupl Phase Diagr Thermochem 54:35–53. https://doi.org/10.1016/j.calphad.2016.05.002

    Article  Google Scholar 

  40. Rombouts M, Maes G, Mertens M, Hendrix W (2012) Laser metal deposition of Inconel 625: microstructure and mechanical properties. J Laser Appl 24(5):052007–052007. https://doi.org/10.2351/1.4757717

    Article  Google Scholar 

  41. Prashanth KG, Eckert J (2017) Formation of metastable cellular microstructures in selective laser melted alloys. J Alloy Compd 707:27–34. https://doi.org/10.1016/j.jallcom.2016.12.209

    Article  Google Scholar 

  42. Feng K, Chen Y, Deng P, Li Y, Zhao H, Lu F, Li R, Huang J, Li Z (2017) Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding. J Mater Process Technol 243:82–91. https://doi.org/10.1016/J.JMATPROTEC.2016.12.001

    Article  Google Scholar 

  43. Abioye TE, McCartney DG, Clare AT (2015) Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol 217:232–240. https://doi.org/10.1016/j.jmatprotec.2014.10.024

    Article  Google Scholar 

  44. Renishaw M In625-0402 powder for additive manufacturing. http://resources.renishaw.com/en/details/data-sheet-in625-0402-powder-for-additive-manufacturing--97039. Accessed 10 Oct 2018

  45. Mithilesh P, Varun D, Reddy ARG, Ramkumar KD, Arivazhagan N, Narayanan S (2014) Investigations on dissimilar weldments of inconel 625 and AISI 304. Proc Eng 75:66–70. https://doi.org/10.1016/j.proeng.2013.11.013

    Article  Google Scholar 

  46. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509(1):98–104. https://doi.org/10.1016/j.msea.2009.01.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Cummins India Ltd, for supplying the raw materials for the experiment and Renishaw solutions, Pune for conducting the SLM process.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Gautam.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebastian, R., Singh, A.K., Paliwal, M. et al. Investigation of the interface between SLM processed nickel alloy on a cast iron substrate. Prog Addit Manuf 4, 131–142 (2019). https://doi.org/10.1007/s40964-018-0066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-018-0066-y

Keywords

Navigation