Skip to main content
Log in

Reassessment of Aluminium-Oxygen Equilibrium in High Al Molten Steel During Aluminium Deoxidation Process at 1873 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The Al-O equilibrium at high Al content during Al deoxidation process at 1873 K is reassessed in the present study due to the fact that there are still obvious discrepancies among the existing studies. The Fe-Al-O melts with varying Al content (0.01<[pct Al]<15) were equilibrated with pure solid Al2O3 at 1873 K in Al2O3 crucible under Ar (90 pct)-H2 (10 pct) mixture atmosphere, and a flux composed of CaO (30 wt pct)-Al2O3 (65 wt pct)-CaF2 (5 wt pct) was adopted to remove the inclusions to accurately measure the dissolved oxygen content in the samples. Then, based on experimental data, the interaction parameters between O and Al, as well as the equilibrium constant K, were deduced by WIPF (Wagner’s Interaction Parameter Formalism), UIP (Unified Interaction Parameter) formulism and the R–K polynomial (Redlich-Kister type polynomial), respectively. Further, the applicability concentration range of the WIPF in Fe-Al-O melts was investigated. It was found that the WIPF can be used when the concentration range of Al content is less than 9 wt pct, while the adoption of WIPF will certainly lead to a large deviation at higher Al content. Besides, when the Al content is smaller than about 2 wt pct, the WIPF can be used without considering the second-order interaction parameters between Al and O. However, the second-order interaction parameter must be introduced at a higher Al content range. Finally, the activity and activity coefficient of Al and O in Fe-Al-O melts was calculated using R–K polynomial. The results show that with the increase of Al content, the activity and activity coefficient of O decreases, while activity and activity coefficient of Al obviously increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Kaar, K. Steineder, R. Schneider, D. Krizan, and C. Sommitsch: Scripta Mater., 2021, vol. 200, 113923.

    Article  CAS  Google Scholar 

  2. S. Ebner, C. Suppan, A. Stark, R. Schnitzer, and C. Hofer: Mater. Design., 2019, vol. 178, p. 107862.

    Article  CAS  Google Scholar 

  3. D. Tang and P.C. Pistorius: Metall. Mater. Trans. B, 2021, vol. 52, pp. 51–58.

    Article  CAS  Google Scholar 

  4. M. Nabeel, M. Alba, A. Karasev, P.G. Jnsson, and N. Dogan: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 1674–85.

    Article  Google Scholar 

  5. M.K. Paek, S. Chatterjee, J.J. Pak, and I.H. Jung: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1243–62.

    Article  Google Scholar 

  6. J.W. Cho, S. Yoo, M.S. Park, J.K. Park, and K.H. Moon: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 187–96.

    Article  Google Scholar 

  7. M.K. Paek, J.M. Jang, Y.B. Kang, et al.: Metall Mater Trans B, 2015, vol. 46B, pp. 1826–36.

    Article  Google Scholar 

  8. R.J. Fruehan: Metall Mater Trans B, 1970, vol. 1B, pp. 3403–10.

    Article  Google Scholar 

  9. V.E. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52–57.

    Google Scholar 

  10. H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381–88.

    Article  CAS  Google Scholar 

  11. Y.J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483–89.

    Article  CAS  Google Scholar 

  12. L.E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165–74.

    Article  CAS  Google Scholar 

  13. J.H. Swisher: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 123–24.

    CAS  Google Scholar 

  14. H. Schenck, E. Steinmetz, and K.K. Mehta: Arch. Eisenhüttenwes., 1970, vol. 41, pp. 131–38.

    Article  CAS  Google Scholar 

  15. D. Janke and W.A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, pp. 195–98.

    Article  CAS  Google Scholar 

  16. I.H. Jung, S.A. Decterov, and A.D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493–507.

    Article  CAS  Google Scholar 

  17. H. Itoh, M. Hino, and S. Banya: Tetsu-to-Hagané, 1997, vol. 83, pp. 773–78.

    Article  CAS  Google Scholar 

  18. D.C. Hilty and W. Crafts: JOM, 1950, vol. 2, pp. 414–24.

    Article  Google Scholar 

  19. The 19th Committee in Steelmaking: Thermodynamic Data For Steelmaking, The Japan Society for Promotion of Science, Tohoku University Press, Sendai, Japan, 2010, pp. 10-13.

  20. S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66(1), pp. 3–7.

    Article  CAS  Google Scholar 

  21. A.D. Pelton and C.W. Bale: Metall. Mater. Trans. A, 1986, vol. 17A, pp. 1211–15.

    Article  CAS  Google Scholar 

  22. C.W. Bale and A.D. Pelton: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 1997–2002.

    Article  CAS  Google Scholar 

  23. A.D. Pelton: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 869–76.

    Article  CAS  Google Scholar 

  24. L.M. Yonemoto, T. Miki, and M. Hino: ISIJ Int, 2008, vol. 48, pp. 755–59.

    Article  CAS  Google Scholar 

  25. T. Miki and M. Hino: ISIJ Int, 2004, vol. 44, pp. 1800–09.

    Article  CAS  Google Scholar 

  26. T. Miki and M. Hino: ISIJ Int, 2005, vol. 45(12), pp. 1848–55.

    Article  CAS  Google Scholar 

  27. R. Ries and K. Schwerdtfeger: Arch. Eisenhüttenwes., 1980, vol. 51, pp. 123–29.

    Article  CAS  Google Scholar 

  28. G.K. Sigworth and J.F. Elliott: Metal. Sci., 1974, vol. 8, pp. 298–310.

    Article  CAS  Google Scholar 

  29. N.A. Gokcen and J. Chipman: J. Met., 1953, vol. 197, pp. 173–78.

    Google Scholar 

  30. A. McLean and H.B. Bell: J. Iron Steel Inst., 1965, vol. 203, pp. 123–30.

    CAS  Google Scholar 

  31. C.H.P. Lupis and J.F. Elliott: Acta Mater., 1966, vol. 14(9), pp. 1019–32.

    Article  CAS  Google Scholar 

  32. H. Fukaya, K. Kajikawa, A. Malfliet, et al.: Metall Mater Trans B, 2018, vol. 49B, pp. 2389–99.

    Article  Google Scholar 

  33. A. Hayashi, T. Uenishi, H. Kandori, et al.: ISIJ Int., 2008, vol. 48(11), pp. 1533–41.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this research by the National Natural Science Foundation of China (Grant Nos. 52104293 and 51774025), the China Postdoctoral Science Foundation (Grant No 2021M690367), and Fundamental Research Funds for the Central Universities (Grant No FRF-IDRY-20-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baijun Yan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Han, L. & Yan, B. Reassessment of Aluminium-Oxygen Equilibrium in High Al Molten Steel During Aluminium Deoxidation Process at 1873 K. Metall Mater Trans B 53, 2512–2522 (2022). https://doi.org/10.1007/s11663-022-02546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02546-x

Navigation