Skip to main content
Log in

A Large Eddy Simulation Study of Flow Turbulence, Alumina Transport, and Bath Temperature Evolution in Conventional Aluminum-Smelting Cell Using OpenFOAM

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this study, a Large Eddy Simulation (LES) of the aluminum-smelting process is performed using OpenFOAM. To understand the coupled behavior of heat transfer, mass transfer, and flow of the smelting process, a multi-physics computational fluid dynamics (CFD) model based on the Eulerian–Eulerian multi-fluid approach is adopted. The model accounts for CO2 bubble and magnetohydrodynamics (MHD)-driven flow, along with alumina dissolution, transport, and bath temperature evolution. The simulation predictions show small-scale turbulent vortical structures in the anode–cathode space caused by combined effect of MHD and CO2 bubble-bath interactions and relatively large-scale asymmetric vortices in the inter-anode space caused by the CO2 bubble-bath interactions. The vortex formation at the edges of the anodes evidently aids in transporting alumina from the central channel to the bottom of the anodes and prevents accumulation of gas bubbles in the periphery of the anode bottom. Symmetric bath cold spots are observed in the vicinity of the feeder. Cold spots are also observed in the anode–cathode distance space below the anode bottom due to the transport of undissolved solid to this region by the flow. The findings from the work are useful in developing and designing alumina-feeding strategy leading to reduced anode effects and smooth operation of the cell. The work also highlights the important flow structures in conventional aluminum-smelting cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

p :

Pressure (N/m2)

u :

Velocity (m/s)

T :

Temperature (K)

Y :

Mass fraction (-)

k :

Turbulent kinetic energy (m2/s2)

\(\alpha\) :

Volume fraction (-)

\(\rho\) :

Density (kg/m3)

\(\mu\) :

Dynamic viscosity (Pa s)

C p :

Heat capacity (J/Kg K)

k :

Thermal conductivity (W/m K)

d :

Particle size (m)

D :

Diffusion coefficient (m2/s)

J :

Current density (A/m2)

B :

Magnetic field (T)

L :

Lorentz force (N/m3)

\(\sigma\) :

Conductivity (S/m)

g :

Gravity (m/s2)

References

  1. J. Li, Y. Xu, H. Zhang, and Y. Lai: Int. J. Multiph. Flow, 2011, vol. 37, pp. 46–54.

    Article  Google Scholar 

  2. Y. Feng, M.A. Cooksey and M. P. Schwarz, Light Metals, pp. 543–48, 2011.

  3. H. Zhang, S. Yang, H. Zhang, J. Li, and Y. Xu: Jom, 2014, vol. 66, pp. 1210–17.

    Article  CAS  Google Scholar 

  4. Q. Wang, B. Li, Z. He, and N. Feng: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 272–94.

    Article  Google Scholar 

  5. S. Zhan, M. Li, J. Zhou, J. Yang, and Y. Zhou: Appl. Therm. Eng., 2014, vol. 73, pp. 805–18.

    Article  CAS  Google Scholar 

  6. K.E. Einarsrud, I. Eick, W. Bai, Y. Feng, J. Hua, and P.J. Witt: Appl. Math. Model., 2017, vol. 44, pp. 3–24.

    Article  Google Scholar 

  7. A. Cubeddu, V. Nandana and U. Janoske, Light Metals, pp. 605–13, 2019.

  8. J. Hua, M. Rudshaug, C. Droste, R. Jorgensen, and N.H. Giskeodegard: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 1246–66.

    Article  Google Scholar 

  9. X. Liu, Y. Yang, Z. Wang, W. Tao, T. Li, and Z. Zhao: JOM, 2019, vol. 71, pp. 764–71.

    Article  CAS  Google Scholar 

  10. M. Baiteche, S.M. Taghavi, D. Zeigler and M. Fafard, Light Metals, pp. 679–86, 2017.

  11. D. A. Drew and S. L. Passman, Springer, vol. 135, 2006.

  12. R.O. Fox: Annu. Rev. Fluid Mech., 2012, vol. 44, pp. 47–76.

    Article  Google Scholar 

  13. N. Panicker, A. Passalacqua, and R.O. Fox: Chem. Eng. Sci., 2020, vol. 216, 115546.

    Article  CAS  Google Scholar 

  14. M.T. Dhotre, N.G. Deen, B. Niceno, Z. Khan and J.B. Joshi, Int. J. Chem. Eng., 2013.

  15. N.S. Panicker, R. Chaudhary, P. Jain, V.M. Rao and M.O. Delchini, in 5-6th Thermal and Fluids Engineering Conference, Chicago, 2021.

  16. L. Giuliana, E. Oliaii, C.B. Viera, M. Desilets, and P. Proulx: J. Fluid Flow Heat Mass Transf., 2018, vol. 5(1), pp. 18–31.

    Google Scholar 

  17. L. Schiller: Zet. Ver. Deutsch. Ing., 1933, vol. 77, pp. 318–20.

    Google Scholar 

  18. W. Ranz and W.R. Marshall: Chem. Eng. Prog, 1952, vol. 48, pp. 141–73.

    CAS  Google Scholar 

  19. N. Frossling: Geophysics, 1938, vol. 52, pp. 170–216.

    CAS  Google Scholar 

  20. J. Thonstad, A. Solheim, S. Rolseth and O. Skar, in Essential readings in Light Metals, pp. 105–11, 2016.

  21. J. Smagorinsky, Montly Weather Rev., pp. 99–164, 1963.

  22. OpenFOAM, "https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-les-smagorinsky.html," OpenFOAM, 2012.

  23. Fumiya, "https://caefn.com/openfoam/smagorinsky-sgs-model," CFD WITH A MISSION, 2019.

  24. D. Spalding: Trans. ASME Ser. E, 1961, vol. 28, pp. 455–58.

    Article  Google Scholar 

  25. E. Skybakmoen, A. Solheim, and A. Sterten: Metall. Mater. Trans. B., 1997, vol. 28B, pp. 81–86.

    Article  CAS  Google Scholar 

  26. Y. Q. Feng, W. Yang, M. Cooksey and M. P. Schwarz, in Fifth International Conference on Computational Fluid Dynamics in the Process Industries, 2006.

  27. K. Zhang, Y. Feng, P. Schwarz, Z. Wang, and M. Cooksey: Ind. Eng. Chem. Res., 2013, vol. 52, pp. 11378–90.

    Article  CAS  Google Scholar 

  28. M. Alam, Y. Morsie, W. Yang, K. Mohanarangam, G. Brooks and J. Chen, Light Metals, pp. 591–96, 2003.

  29. M. Sun, R. Mollaabbasi, B. Li, H. Alamdari, M. Fafard, and S.M. Taghavi: Ind. Eng. Chem. Res., 2020, vol. 59(17), pp. 8403–15.

    Article  CAS  Google Scholar 

  30. I. Eick, W. Bai, K. E. Einarsrud, Y. Feng, J. Hua and P. J. Witt, in Eleventh International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, 2015.

Download references

Acknowledgments

This research was supported by a US Department of Energy High Performance Computing for Energy Innovation (HPC4EI) Grant. This research used compute resources of Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC05-00OR22725. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithin S. Panicker.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix AI

Appendix AI

See Nomenclature.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panicker, N.S., Chaudhary, R., Rao, V.M. et al. A Large Eddy Simulation Study of Flow Turbulence, Alumina Transport, and Bath Temperature Evolution in Conventional Aluminum-Smelting Cell Using OpenFOAM. Metall Mater Trans B 53, 2407–2426 (2022). https://doi.org/10.1007/s11663-022-02539-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02539-w

Navigation