Skip to main content

Advertisement

Log in

Research on Rare Earth Tailings-Based Slag Used for Dephosphorization of Hot Metal Containing Moderate Amounts of Chromium

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The utilization of rare earth tailings still has various disadvantages such as high energy consumption, low utilization ratio and serious pollution, which severely restricts the industrialization. As a result, it is difficult to solve the solid waste treatment problems of rare earth tailings fundamentally. To achieve bulk utilization in a way of energy conservation and environmental protection, a novel technology of dephosphorization using rare earth tailings-based slag was proposed to realize both dephosphorization and chromium retention of hot metal containing moderate amounts of chromium. To develop this new technology, a series of equilibrium experiments between slag and hot metal containing moderate amounts of chromium was carried out using a molybdenum disilicide resistance furnace at 1723 K. The effect of slag composition on the oxidation of phosphorus and chromium in hot metal was investigated, and the commercial software FactSage 7.2 was also utilized for analyses. The effective dephosphorization and recycle of rare earth tailings were realized via optimizing chemical composition of slag. In addition, the addition of Cr2O3 inhibits the chromium loss significantly, resulting from increased activity of Cr2O3. When the CaO/Fe2O3 ratio in the initial slag increases, the chromium loss ratio shows a continual declining tendency, while the dephosphorization efficiency first increases and then decreases. With the increase of rare earth tailings proportion (abbreviated as RETP), both the dephosphorization efficiency and chromium loss ratio fall. Both the dephosphorization efficiency and chromium loss ratio show a decreasing tendency with increasing CaF2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.W. Hang and X.Q. Cui: Min. Res. Dev., 2012, vol. 6, pp. 116–19.

    Google Scholar 

  2. X. Huang, G.C. Zhang, A. Pan, F.Y. Chen, and C.L. Zheng: Earth’s Future, 2016, vol. 11, pp. 532–35.

    Article  Google Scholar 

  3. H. Yang, Y. Rong, R. Tang, X.X. Xue, and Y. Li: Rare Met., 2013, vol. 32, pp. 616–21.

    Article  Google Scholar 

  4. H. Yang, Y. Rong, C. Han, R. Tang, X.X. Xue, Y. Li, and Y.N. Li: J. Cent. South Univ., 2016, vol. 23, pp. 1899–905.

    Article  CAS  Google Scholar 

  5. X. Lan, J.T. Gao, Y. Li, and Z.C. Guo: J. Hazard. Mater., 2019, vol. 367, pp. 473–81.

    Article  CAS  Google Scholar 

  6. S. Yuan, H. Yang, X.X. Xue, and Y. Zhou: Rare Met., 2017, vol. 36, pp. 764–68.

    Article  CAS  Google Scholar 

  7. F.W. Zeng, X.L. Yu, J. Liu, J.Q. Zhang, J. Zhang, and Z.C. Wang: Chin. J. of Nonferrous Met., 2007, vol. 17, pp. 1195–200.

    Article  CAS  Google Scholar 

  8. Y. Zhou, H. Yang, X.X. Xue, and S. Yuan: Metals, 2017, vol. 7, pp. 195–214.

    Article  Google Scholar 

  9. Y. Zhang, H. Lin, Y.B. Dong, X.F. Xu, X. Wang, and Y.J. Gao: Rare Met., 2017, vol. 36, pp. 220–28.

    Article  Google Scholar 

  10. L.Q. Zhang, H.F. Zhou, and B.F. Yuan: J. Cent. South Univ., 2013, vol. 44, pp. 32–39.

    CAS  Google Scholar 

  11. S.W. Huang, B.Y. Wu, and Y.H. Xu: Chin. Min. Mag., 2006, vol. 15, pp. 54–58.

    CAS  Google Scholar 

  12. J. Xu, Y.Y. Yan, Q. Yan, X.K. Jiao, and X.P. Luo: Metal Min., 2014, vol. 12, pp. 129–33.

    Google Scholar 

  13. T. Zhao, B.W. Li, Z.Y. Gao, and D.Q. Chang: Mater. Sci. Eng. B, 2010, vol. 170, pp. 22–25.

    Article  CAS  Google Scholar 

  14. Z.F. Wang, Y.A. Huang, H.J. Luo, Z.J. Gong, K. Zhang, N. Li, and W.F. Wu: Green Process. Synth., 2019, vol. 8, pp. 865–72.

    Article  CAS  Google Scholar 

  15. L.F. Li, M.F. Jiang, W.Z. Wang, C.J. Jin, and Z.P. Chen: Metall. Mater. Trans. B, 1999, vol. 30, pp. 451–57.

    Article  Google Scholar 

  16. A.N. Assis, M.A. Tayeb, S. Sridhar, and R.J. Fruehan: Metals, 2019, vol. 9, pp. 116–28.

    Article  CAS  Google Scholar 

  17. X.J. Xi, S.F. Yang, J.S. Li, D.Q. Luo, X.N. Cai, and C.B. Lai: Ironmak. Steelmak., 2019, vol. 46, pp. 485–90.

    Article  CAS  Google Scholar 

  18. F.S. Li, X.P. Li, S.F. Yang, and Y.L. Zhang: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2367–78.

    Article  CAS  Google Scholar 

  19. P.B. Drain, B.J. Monaghan, R.J. Longbottom, M.W. Chapman, G.Q. Zhang, and S.J. Chew: ISIJ Int., 2018, vol. 58, pp. 1965–71.

    Article  CAS  Google Scholar 

  20. S.Y. Kitamura, T. Kitamura, K. Shibata, Y. Mizukami, S. Mukawa, and J. Nakagawa: ISIJ Int., 1991, vol. 31, pp. 1322–28.

    Article  CAS  Google Scholar 

  21. B.J. Monaghan, R.J. Pomfret, and K.S. Coley: Metall. Trans. B, 1998, vol. 29, pp. 111–18.

    Article  Google Scholar 

  22. J. Diao, X. Liu, T. Zhang, and B. Xie: Int. J. Miner Metall. Mater., 2015, vol. 22, pp. 249–53.

    Article  CAS  Google Scholar 

  23. C.P. Manning and R.J. Fruehan: Metall. Mater. Trans. B, 2013, vol. 44, pp. 37–44.

    Article  CAS  Google Scholar 

  24. K.Z. Gu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1119–35.

    Article  CAS  Google Scholar 

  25. M. Nasu, K.C. Mills, B.J. Monaghan, A. Jakobsson, and S. Seetharaman: Ironmak. Steelmak., 1999, vol. 26, pp. 353–57.

    Article  CAS  Google Scholar 

  26. L.J. Chen, Y. Wan, X.J. Xia, J. Li, Y.D. Yang, and A. Mclean: Ironmak. Steelmak., 2021, vol. 48, pp. 868–78.

    Article  CAS  Google Scholar 

  27. C. Nassaralla, R.J. Fruehan, and D.J. Min: Metall. Trans. B 1991, vol. 22, pp. 33–38.

    Article  Google Scholar 

  28. S.R. Simeonov and N. Sano: Trans. Iron Steel Inst. Jpn., 1985, vol. 25, pp. 1031–35.

    Article  CAS  Google Scholar 

  29. H. Sun, J. Yang, R.H. Zhang, and W.K. Yang: Metall. Mater. Trans. B, 2021, vol. 52, pp. 3403–22.

    Article  CAS  Google Scholar 

  30. Z. Wang, P. Tang, G.H. Wen, and Q. Liu: ISIJ Int., 2019, vol. 59, pp. 367–74.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the National Natural Science Foundation and Steel Joint Research Fund of China BaoWu Steel Group Co., LTD (Grant No. U1960110) for sponsoring this work. The authors also gratefully express their appreciation to the National Natural Science Foundation of China (Grant Nos. 52074003 and 52074001) and Key Laboratory of Metallurgical Engineering and Comprehensive Utilization of Resources of Anhui Province Open Fund (Grant No. SKF21-06) for sponsoring this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xue, H., Li, J. et al. Research on Rare Earth Tailings-Based Slag Used for Dephosphorization of Hot Metal Containing Moderate Amounts of Chromium. Metall Mater Trans B 53, 2377–2385 (2022). https://doi.org/10.1007/s11663-022-02536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02536-z

Navigation