Skip to main content

Advertisement

Log in

RETRACTED ARTICLE: Charging Biochar Composite Briquette in Blast Furnace for Reducing CO2 Emissions: Combined Numerical and Experimental Investigations

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

This article was retracted on 28 April 2023

This article has been updated

Abstract

A combined experimental and numerical analysis was conducted in this research on charging biochar composite briquette (BCB) to blast furnace (BF). The BCB used in this study was constituted of 10.10 wt pct carbon, 72.21 wt pct magnetite, 11.25 wt pct wustite, and 0.77 wt pct metallic iron. The reaction kinetics of BCB was determined using isothermal reaction tests under a simulated BF atmosphere. Numerical simulations were conducted to evaluate the BCB reaction behavior in BF and its effect on BF performance when 20 mass pct ore was substituted with BCB. The investigations revealed that, when ags = 1750 m2/m3, the predictions of the previously suggested composite briquette model accorded well with the experimental measurements. The findings of numerical simulations indicated that when the BCB was charged, it exhibited a rapid self-reduction in the temperature range of 600 °C to 900 °C (873 K to 1173 K). The BCB iron-oxide reduction and biochar gasification were completed above the cohesive zone. In the BCB charging operation, ore reduction was retarded in the solid temperature range less than 900 °C (1173 K), and it was prompted in the solid temperature range greater than 900 °C (1173 K). Local gas utilization increased in the mid-shaft and decreased at the burden surface. By charging BCB to BF, it was possible to increase BF productivity by 142 tHM/day, to decrease coke rate by 56.2 kg/tHM, to decrease PC rate by 8.9 kg/tHM, and to decrease BF CO2 emissions by 113 kg CO2/tHM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

Abbreviations

A :

Specific area of solid burden (m2/m3)

a gs :

Specific surface of iron-oxide particles in BCB (m2/m3)

Cp:

Heat capacity, (J/kg/K)

d :

Diameter, diameter of BCB (m)

D, D eff :

Gas diffusivity, effective gas diffusivity (m2/s)

E :

Enthalpy source (J/m3/s)

f i :

Reaction fraction or biochar conversion of reaction i in Table 6 (–)

H :

Total enthalpy (J/kg)

ΔH i :

Reaction heat (J/kmol)

h :

Heat transfer coefficient (W/m2/K)

k i :

Reaction rate constant of reaction i in Table 6 (m/s, kg/s/atm)

K i :

Equilibrium constant of reaction i in Table 6 (–)

m :

Mass supply/consumption rate of the given element (kg/s)

M :

Molar weight (kg/kmol)

MSE:

Mean square error (–)

P :

Pressure (Pa)

Pr :

Prandtl number (–)

R :

Gas constant (8.314 J/mol/K)

Re :

Reynolds number (–)

R i :

Chemical reaction rate of reaction i in Table 3 (kmol/m3/s)

r :

Radial direction in BCB or BF (m)

r i :

Chemical reaction rate of reaction i in Table 6 (mol/m3/s)

S :

Source, units vary

Sc :

Schmidt number (–)

T :

Temperature (K)

t :

Time (s)

V cell :

Cell volume (m3)

y :

Mass fraction (–)

α :

BCB porosity (–)

\(\varepsilon\) :

Volume fraction

\(\xi\) :

Tortuosity factor in BCB (–)

\(\phi ,\theta\) :

General dependent variable

\({\Gamma }\) :

General diffusion coefficient

ρ :

Density (kg/m3)

η :

Liquid fraction (–)

\(\lambda\) :

Thermal conductivity (W/m/K)

µ :

Fluid viscosity (kg/m/s)

\({\overset\rightharpoonup{\mathbf{U}}}_{{\text{g}}}\) :

Superficial gas velocity (m/s)

\({\overset\rightharpoonup{\mathbf{V}}}_{{\text{s}}}\) :

Solid physical velocity (m/s)

\({\overset\rightharpoonup{\mathbf{F}}}_{{\text{gs}}}\) :

Gas flow resistance (N/m3)

0:

Initial

BCB:

BCB variable

coke:

Coke variable

ore:

Ore variable

g:

Gas variable

l:

Liquid variable

s:

Solid variable

e:

Environment variable

Species or element name:

Variable of assigned species or element

References

  1. World Steel Association: Steel Statistical Yearbook 2020 Concise Version, World Steel Association, Brussels, Belgium, 2020. https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html. Accessed 5 December 2021.

  2. X. Zhu, H. Li, J. Chen, and F. Jiang: J. Clean. Prod., 2019, vol. 240, p. 118184.

    Article  Google Scholar 

  3. X. Tan, H. Li, J. Guo, B. Gu, and Y. Zeng: J. Clean. Prod., 2019, vol. 222, pp. 823–34.

    Article  CAS  Google Scholar 

  4. E. Mousa, C. Wang, J. Riesbeck, and M. Larsson: Renew. Sustain. Energy Rev., 2016, vol. 65, pp. 1247–66.

    Article  Google Scholar 

  5. T. Norgate, N. Haque, M. Somerville, and S. Jahanshahi: ISIJ Int., 2012, vol. 52, pp. 1472–81.

    Article  CAS  Google Scholar 

  6. L. Florentino-Madiedo, E. Díaz-Faes, and C. Barriocanal: Fuel Process. Technol., 2019, vol. 193, pp. 212–20.

    Article  CAS  Google Scholar 

  7. S. Das, S. Sharma, and R. Choudhury: Energy., 2002, vol. 27, pp. 405–14.

    Article  CAS  Google Scholar 

  8. M. Zandi, M. Martinez-Pacheco, and T. Fray: Miner. Eng., 2010, vol. 23, pp. 1139–45.

    Article  CAS  Google Scholar 

  9. G. Jha and S. Soren: Renew. Sustain. Energy Rev., 2017, vol. 80, pp. 399–407.

    Article  CAS  Google Scholar 

  10. J.G. Mathieson, H. Rogers, M.A. Somerville, and S. Jahanshahi: ISIJ Int., 2012, vol. 52, pp. 1489–96.

    Article  CAS  Google Scholar 

  11. C. Wang, P. Mellin, J. Lövgren, L. Nilsson, W. Yang, H. Salman, A. Hultgren, and M. Larsson: Energy Convers. Manag., 2015, vol. 102, pp. 217–26.

    Article  CAS  Google Scholar 

  12. Y. Liu and Y. Shen: Fuel Process. Technol., 2019, vol. 191, pp. 152–67.

    Article  CAS  Google Scholar 

  13. H. Wang, M. Chu, W. Zhao, Z. Liu, and J. Tang: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 324–36.

    Article  Google Scholar 

  14. W. Zhao, M. Chu, Z. Liu, H. Wang, and Z. Ying: Metall. Mater. Trans. B., 2019, vol. 50B, pp. 1878–95.

    Article  Google Scholar 

  15. H. Mizoguchi, H. Suzuki, and S. Hayashi: ISIJ Int., 2011, vol. 51, pp. 1247–54.

    Article  CAS  Google Scholar 

  16. H. Yokoyama, K. Higuchi, T. Ito, and A. Oshio: ISIJ Int., 2012, vol. 52, pp. 2000–06.

    Article  CAS  Google Scholar 

  17. M. Chu, Z. Liu, Z. Wang, and J.I. Yagi: Steel Res. Int., 2011, vol. 82, pp. 521–28.

    Article  CAS  Google Scholar 

  18. H.M. Ahmed, N. Viswanathan, and B. Bjorkman: Steel Res. Int., 2014, vol. 85, pp. 293–306.

    Article  CAS  Google Scholar 

  19. H. Wang, W. Zhao, M. Chu, Z. Liu, J. Tang, and Z. Ying: Powder Technol., 2018, vol. 328, pp. 318–28.

    Article  CAS  Google Scholar 

  20. M. Chu, H. Nogami, and J.I. Yagi: ISIJ Int., 2004, vol. 44, pp. 510–17.

    Article  CAS  Google Scholar 

  21. X. Yu and Y. Shen: Energy Fuels., 2019, vol. 33, pp. 11603–16.

    Article  CAS  Google Scholar 

  22. S. Ueda, K. Watanabe, K. Yanagiya, R. Inoue, and T. Ariyama: ISIJ Int., 2009, vol. 49, pp. 1505–12.

    Article  CAS  Google Scholar 

  23. E. Mousa, M. Lundgren, L.S. Ökvist, L.E. From, A. Robles, S. Höllsten, S. Bo, H. Friberg, and A. El-Tawil: J. Sustain. Metall., 2019, vol. 5, pp. 391–401.

    Article  Google Scholar 

  24. M. Singh and B. Björkman: Ironmak. Steelmak., 2007, vol. 34, pp. 30–40.

    Article  CAS  Google Scholar 

  25. Z. Yu, Z. Liu, H. Tang, and Q. Xue: Metall. Res. Technol., 2021, vol. 118, pp. 109–17.

    Article  CAS  Google Scholar 

  26. H. Tang, Y. Sun, T. Rong, and Z. Guo: Powder Technol., 2021, vol. 377, pp. 832–42.

    Article  CAS  Google Scholar 

  27. H. Tang, T. Rong, and K. Fan: ISIJ Int., 2019, vol. 59, pp. 810–19.

    Article  CAS  Google Scholar 

  28. Z. Liu, Z. Yu, X. She, H. Tang, and Q. Xue: Metals., 2020, vol. 10, pp. 1666–75.

    Article  Google Scholar 

  29. P.R. Austin, H. Nogami, and J.I. Yagi: ISIJ Int., 1997, vol. 37, pp. 458–67.

    Article  CAS  Google Scholar 

  30. S.B. Kuanga, Z.Y. Li, D.L. Yan, Y.H. Qi, and A.B. Yu: Miner. Eng., 2014, vol. 63, pp. 45–56.

    Article  Google Scholar 

  31. J.G. Mathieson, J.S. Truelove, and H. Rogers: Fuels., 2005, vol. 84, pp. 1229–37.

    Article  CAS  Google Scholar 

  32. J. Chen, T. Akiyama, H. Nogami, J.I. Yagi, and H. Takahashi: ISIJ Int., 1993, vol. 33, pp. 664–71.

    Article  CAS  Google Scholar 

  33. H. Tang, T. Qi, and Y. Qin: JOM., 2015, vol. 67, pp. 1956–65.

    Article  CAS  Google Scholar 

  34. H. Tang, Z. Yun, X. Fu, and D. Shen: Metals., 2018, vol. 8, pp. 205–15.

    Article  Google Scholar 

  35. H.X. Guo: Applied Chemical Kinetics, 1st ed. Chemical Engineering Press, Beijing, 2003, pp. 457–59.

    Google Scholar 

  36. CHAM: PHOENICS User Document, CHAM Ltd., London, 2000.

    Google Scholar 

  37. D.J. Gavel: Mater. Sci. Technol., 2017, vol. 33, pp. 381–87.

    Article  CAS  Google Scholar 

  38. H. Zhang, L. Dong, H. Li, T. Fujita, S. Ohnishi, and Q. Tang: Energy Policy., 2013, vol. 61, pp. 1400–11.

    Article  CAS  Google Scholar 

  39. Z. Zhou, X. Guo, G. Wang, Z. Xiang, and R. Wang: in Selected Papers of the 8th Annual Meeting of Chinese Iron and Steel Association, Metallurgical Industry Press, Beijing, 2011.

Download references

Acknowledgments

The authors thank the National Natural Science Foundation of China for supporting this work (Project No. U1960205).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqing Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11663-023-02792-7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Ma, L., Liu, Z. et al. RETRACTED ARTICLE: Charging Biochar Composite Briquette in Blast Furnace for Reducing CO2 Emissions: Combined Numerical and Experimental Investigations. Metall Mater Trans B 53, 2248–2261 (2022). https://doi.org/10.1007/s11663-022-02525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02525-2

Navigation