Skip to main content
Log in

Investigation into the Temperature of Metallic High-Temperature Confocal Scanning Laser Microscope Samples

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In high-temperature confocal scanning laser microscopy, the top of the opaque sample is observed while being heated by thermal radiation from an incandescent heating element, reflected from the inside of an ellipsoidal chamber. The temperature is measured with a thermocouple in the sample holder. The true temperature at the top of the sample differs from the measured temperature because of thermal contact resistance (between the metallic sample and the crucible, and between the crucible and the sample holder) and because of temperature gradients within the sample. Assessment of these differences is important for accurate experiments. The method of accounting for the difference between the true sample temperature and the measured temperature was found to have an error of ± 12.5 °C when melting pure metals in MgO crucibles. Temperature gradients within the sample were investigated by observing MgO particles flowing on liquid iron and comparison with a finite element model. Particles near the top of the droplet had median velocities around 20 μm/s. The model (which included radiative heating) predicted a velocity of 3 mm/s with temperature difference of 1.2 °C over the droplet height. The real droplet is expected to have a difference of less than 1 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Ren, P. Zhu, C. Ren, N. Liu, and L. Zhang: Metall. Mater. Trans. B., 2022, vol. 53, pp. 682–92.

    Article  CAS  Google Scholar 

  2. R. Sarkar and Z. Li: Metall. Mater. Trans. B., 2021, vol. 52, pp. 1357–78.

    Article  CAS  Google Scholar 

  3. Y. Liu, Y. Sun, and H. Wu: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 1011–21.

    Article  CAS  Google Scholar 

  4. J. Zeng, C. Zhu, W. Wang, and X. Li: Metall. Mater. Trans. B., 2020, vol. 51, pp. 2522–31.

    Article  Google Scholar 

  5. M.E. Story and B.A. Webler: JOM., 2018, vol. 70, pp. 1225–31.

    Article  CAS  Google Scholar 

  6. E. Schmidt, D. Soltesz, S. Roberts, A. Bednar, and S. Sridhar: ISIJ Int., 2006, vol. 46, pp. 1500–09.

    Article  CAS  Google Scholar 

  7. S.P.T. Piva, D. Tang, D. Kumar, and P.C. Pistorius: in TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, Springer, Cham, 2018, pp. 193–200.

  8. H. Abdeyazdan, N. Dogan, R.J. Longbottom, M. Akbar Rhamdhani, M.W. Chapman, and B.J. Monaghan: Advanced Real Time Imaging, The Minerals, Metals & Materials Society, Pittsburgh, 2019, pp. 61–73.

    Book  Google Scholar 

  9. Y. Li, Y. Li, and R.J. Fruehan: ISIJ Int., 2001, vol. 41, pp. 1417–22.

    Article  CAS  Google Scholar 

  10. Y. Kang, P.R. Scheller, D. Sichen, and K. Morita: Advanced Real Time Imaging II, The Minerals, Metals & Materials Society, Pittsburgh, 2019, pp. 13–18.

    Book  Google Scholar 

  11. G. Wang, Y. Zhao, Y. Xiao, P. Jin, S. Li, and S. Sridhar: Metall. Mater. Trans. B., 2020, vol. 51, pp. 3051–66.

    Article  CAS  Google Scholar 

  12. T. Britt and P.C. Pistorius: Metall. Mater. Trans. B., 2021, vol. 52, pp. 1–5.

    Article  CAS  Google Scholar 

  13. H. Mu, T. Zhang, L. Yang, R.R. Xavier, R.J. Fruehan, and B.A. Webler: Metall. Mater. Trans. B., 2016, vol. 47, pp. 3375–83.

    Article  CAS  Google Scholar 

  14. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    Article  CAS  Google Scholar 

  15. H. Yin and T. Emi: Metall. Mater. Trans. B., 2003, vol. 34, pp. 483–93.

    Article  Google Scholar 

  16. S. Piva, P. Pistorius, and B. Webler: JOM., 2018, vol. 70, pp. 1193–98.

    Article  Google Scholar 

  17. J. Valencia and P. Quested: in Casting, ASM Handbook, S. Viswanathan, D. Apelian, R. Donahue, B. DasGupta, M. Gywn, J. Jorstad, R. Monroe, M. Sahoo, T. Prucha, and D. Twarog, eds., vol. 15, ASM International, 2008, pp. 468–81.

  18. Y. Arai, T. Emi, H. Fredriksson, and H. Shibata: Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2005, vol. 36, pp. 3065–74.

    Article  Google Scholar 

  19. I. Arganda-Carreras, V. Kaynig, C. Rueden, K.W. Eliceiri, J. Schindelin, A. Cardona, and H. Sebastian Seung: Bioinformatics., 2017, vol. 33, pp. 2424–46.

    Article  CAS  Google Scholar 

  20. J.-Y. Tinevez, N. Perry, J. Schindelin, G.M. Hoopes, G.D. Reynolds, E. Laplantine, S.Y. Bednarek, S.L. Shorte, and K.W. Eliceiri: Methods., 2017, vol. 115, pp. 80–90.

    Article  CAS  Google Scholar 

  21. COMSOL Multiphysics® v. 5.5, COMSOL AB, Stockholm, Sweden.

  22. Springer Materials: in Landolt-Börnstein: 19A1. Pure Substances: Part 1 Elements and Compounds from AgBr to Ba3N2, Springer, Berlin/Heidelberg, pp. 1–24.

  23. O. Rozenbaum, D. De Sousa Meneses, Y. Auger, S. Chermanne, and P. Echegut: Rev. Sci. Instrum., 1999, vol. 70, pp. 4020–25.

    Article  CAS  Google Scholar 

  24. A.J. Slifka, B.J. Filla, and J.M. Phelps: J. Res. Natl. Inst. Stand. Technol., 1998, vol. 103, p. 357.

    Article  CAS  Google Scholar 

  25. FactSage Thermochemical Software and Databases v. 8.1, CRCT, Montreal, Canada.

  26. G. Neuer and G. Jaroma-Weiland: Int. J. Thermophys., 1998, vol. 19, pp. 917–29.

    Article  CAS  Google Scholar 

  27. C. Smithells: Smithells Metals Reference Book, 8th ed. Elsevier Butterworth-Heinemann, Amsterdam, 2004, pp. 14-1-14–43.

    Google Scholar 

  28. W. Sabuga and R. Todtenhaupt: High Temp. Press., 2001, vol. 33, pp. 261–69.

    Article  CAS  Google Scholar 

  29. Y. Xian, P. Zhang, S. Zhai, P. Yuan, and D. Yang: Appl. Therm. Eng., 2018, vol. 130, pp. 1530–48.

    Article  Google Scholar 

  30. M. Cooper, B. Mikic, and M. Yovanovich: Int. J. Heat Mass Transf., 1969, vol. 12, pp. 279–300.

    Article  Google Scholar 

  31. W.J. Poole, M.F. Ashby, and N.A. Fleck: Scr. Mater., 1996, vol. 34, pp. 559–64.

    Article  CAS  Google Scholar 

  32. C.C. Lo, J.A. Augis, and M.R. Pinnel: J. Appl. Phys., 1979, vol. 50, pp. 6887–91.

    Article  CAS  Google Scholar 

  33. Q. Ma and D.R. Clarke: J. Mater. Res., 1995, vol. 10, pp. 853–63.

    Article  CAS  Google Scholar 

  34. Y. Heichal and S. Chandra: J. Heat Transfer., 2005, vol. 127, pp. 1269–75.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petrus Christiaan Pistorius.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted on December 20, 2021; accepted on March 28, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britt, S.T., Pistorius, P.C. Investigation into the Temperature of Metallic High-Temperature Confocal Scanning Laser Microscope Samples. Metall Mater Trans B 53, 2153–2165 (2022). https://doi.org/10.1007/s11663-022-02515-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02515-4

Navigation