Skip to main content
Log in

Effect of SiO2 on Crystallization of Calcium Ferrites in Fe2O3–CaO–SiO2–Al2O3 System in Cooling Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

SiO2 plays an important role in the formation of calcium ferrite as a main binding phase in iron ore sinter. But the mechanism of SiO2 influence on the crystallization of calcium ferrite has been still unclear. The crystallization behavior of Fe2O3–CaO–SiO2–Al2O3 melt in a non-equilibrium state was investigated using X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results show that SiO2 was an essential impact on the amount formation and morphology of calcium ferrite crystallization during the sintering process. With the increase of SiO2 content, the crystal morphology changed in the order of blocky, columnar, acicular to grains. The crystallization size increased first and then decreased. The crystallization sequence of samples with 4.0 mass pct SiO2 was observed as (Fe2O3, C4F14, SFCA-I) → CF→ SFCA → β-C2S. Increase of the cooling rate promoted the formation of Fe2O3, C4F14, and glass phase and the transformation of SFCA-I to SFCA. However, it also inhibited the crystallization of CF and SFCA, simultaneously the transformation of β-C2S to γ-C2S. The thermodynamic calculation shows that the crystallization temperatures and the primary crystal phase varied with the increase of SiO2 content, which agreed with the experimental results. In addition, the increase of SiO2 significantly reduced the liquid phase amount, simultaneously increased its viscosity at high-temperature range, which was contributing to decrease of the crystallization size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.E. Loo and W. Leung: ISIJ Int., 2003, vol. 43(9), pp. 1393–1402.

    Article  CAS  Google Scholar 

  2. L.X. Yang and C.E. Loo: ISIJ Int., 1997, vol. 37(5), pp. 449–57.

    Article  CAS  Google Scholar 

  3. S.L. Wu, J. Zhu, J.X. Fan, G.L. Zhang, and S.G. Chen: ISIJ Int., 2013, vol. 53(9), pp. 1561–70.

    Article  CAS  Google Scholar 

  4. B.G. Ellis, C.E. Loo, and D. Witchard: Ironmak. Steelmak., 2007, vol. 34(2), pp. 99–108.

    Article  CAS  Google Scholar 

  5. H. Guo and X.M. Guo: Metall. Mater. Trans. B., 2018, vol. 49B(4), pp. 1974–84.

    Article  Google Scholar 

  6. Y.L. Liu, J.S. Wang, H.J. Zhang, J.Z. Liu, X.F. She, and Q.G. Xue: Ironmak. Steelmak., 2015, vol. 42(5), pp. 358–65.

    Article  CAS  Google Scholar 

  7. S.L. Wu, G.L. Zhang, S.G. Chen, and B. Su: ISIJ Int., 2014, vol. 54(3), pp. 582–88.

    Article  CAS  Google Scholar 

  8. A. Cores, A. Babich, M. Muñiz, S. Ferreira, and J. Mochon: ISIJ Int., 2010, vol. 50(8), pp. 1089–98.

    Article  CAS  Google Scholar 

  9. L.H. Hsieh and J.A. Whiteman: ISIJ Int., 1989, vol. 29(8), pp. 625–34.

    Article  CAS  Google Scholar 

  10. T.J. Park, J.S. Choi, and D.J. Min: Met. Mater. Int., 2020, vol. 26, pp. 532–40.

    Article  CAS  Google Scholar 

  11. N.A.S. Webster, D.P. O’Dea, B.G. Ellis, and M.I. Pownceby: ISIJ Int., 2017, vol. 57(1), pp. 41–47.

    Article  CAS  Google Scholar 

  12. A.M. Nyembwe and A.M. Garbers-Craig: Ironmak. Steelmak., 2014, vol. 41(3), pp. 173–81.

    Article  CAS  Google Scholar 

  13. Z. Wang, D. Pinson, S. Chew, B.J. Monaghan, H. Rogers, and G.Q. Zhang: ISIJ Int., 2016, vol. 56(4), pp. 505–12.

    Article  CAS  Google Scholar 

  14. L. Lu, R.J. Holmes, and J.R. Manuel: ISIJ Int., 2007, vol. 47(3), pp. 349–58.

    Article  CAS  Google Scholar 

  15. S.Y. Cheng, M. Shevchenko, P.C. Hayes, and E. Jak: Metall. Master. Trans. B., 2021, vol. 52B, pp. 1891–1914.

    Article  Google Scholar 

  16. N.A.S. Webster, M.I. Powceby, and I.C. Madsen: ISIJ Int., 2013, vol. 53(8), pp. 1334–40.

    Article  CAS  Google Scholar 

  17. N.A.S. Webster, M.I. Powceby, I.C. Madsen, A.J. Studer, J.R. Manuel, and J.A. Kimpton: Metall. Mater. Trans. B., 2014, vol. 45B(6), pp. 2097–2105.

    Article  Google Scholar 

  18. J.D.G. Hamilton, B.F. Hoskins, W.G. Mumme, W.E. Borbidge, and M.A. Montague: Neues Jahrb Min. Abh., 1989, vol. 161(1), pp. 1–26.

    CAS  Google Scholar 

  19. M.I. Pownceby, J.M.F. Clout, and M.J. Fisher-White: Trans. Inst. Min. Metall., 1998, vol. 107, pp. C1-10.

    CAS  Google Scholar 

  20. M.I. Pownceby and J.M.F. Clout: Trans Inst. Min. Metall., 2003, vol. 112, pp. 44–51.

    Google Scholar 

  21. M.I. Pownceby and T.R.C. Patrick: Eur. J. Mineral., 2000, vol. 12, pp. 455–68.

    Article  CAS  Google Scholar 

  22. M.I. Pownceby and T.R.C. Patrick: Metall Mater. Trans. B., 2002, vol. 33B(1), pp. 79–89.

    Google Scholar 

  23. X. Ding and X.M. Guo: Metall. Mater. Trans. B., 2014, vol. 45B, pp. 1221–31.

    Article  Google Scholar 

  24. N.A.S. Webster, M.I. Pownceby, I.C. Madsen, and J.A. Kimpton: Metall Mater. Trans. B., 2012, vol. 43B(6), pp. 1344–57.

    Article  Google Scholar 

  25. K.H. Yajima and S.M. Jung: ISIJ Int., 2012, vol. 52(3), pp. 535–37.

    Article  CAS  Google Scholar 

  26. L.H. Hsieh and J.A. Whiteman: ISIJ Int., 1993, vol. 33(4), pp. 462–73.

    Article  CAS  Google Scholar 

  27. B. Cai, T. Watanabe, C. Kamijo, and M. Susa: ISIJ Int., 2018, vol. 58(4), pp. 642–51.

    Article  CAS  Google Scholar 

  28. C.Y. Ding, X.W. Lv, S.W. Xue, J. Qiu, Y. Chen, and C.G. Gang: ISIJ Int., 2017, vol. 57(4), pp. 634–42.

    Article  CAS  Google Scholar 

  29. T.J. Park, J.S. Choi, and D.J. Min: Metall Mater. Trans. B., 2019, vol. 50B(2), pp. 790–98.

    Article  Google Scholar 

  30. W. Wang, D.W. Yang, Z.L. Ou-Yang, R.S. Xu, and M.M. Song: Metall Mater. Trans. B., 2019, vol. 50B(2), pp. 678–87.

    Article  Google Scholar 

  31. X.H. Fan: Principle and Technology of Optimum Blending of Iron Ore Sintering, Metallurgical Industry Press, Beijing, 2013, pp. 62–65.

    Google Scholar 

  32. Z.J. Wang, Y. Sun, S. Sridhar, M. Zhang, and Z. Zhang: Metall Mater. Trans. B., 2015, vol. 46B(5), pp. 2246–54.

    Article  Google Scholar 

  33. Z.J. Wang, Y. Sun, S. Sridrar, Z. Mei, and Z. Zhang: Metall Mater. Trans. B., 2017, vol. 48B(1), pp. 527–37.

    Article  Google Scholar 

  34. R.T.D. Cruz and S.R. Bragança: Ceramic. Int., 2015, vol. 41, pp. 4775–81.

    Article  Google Scholar 

  35. I. Nettleship, K.G. Slavick, Y.J. Kim, and W.M. Kriven: J. Am. Ceramic. Soc., 1992, vol. 75(9), pp. 2400–06.

    Article  CAS  Google Scholar 

  36. R.G. Chang, Y.T. Yan, J.Y. Zhang, Z.L. Zhu, and J.H. Gu: Thin Solid Films., 2020, vol. 712, p. 138279.

    Article  CAS  Google Scholar 

  37. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R. Ben Mahfoud, J. Melancon, A.D. Pelton, and S. Petersen: Calphad., 2002, vol. 26(2), pp. 189–228.

    Article  CAS  Google Scholar 

  38. R. Roscoe: Br. J. Appl. Phys., 1952, vol. 3, pp. 267–69.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (Nos. 51774029 and U1460201) for financial support of this research. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Min Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 14, 2021; accepted March 14, 2022.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, RF., Guo, XM. Effect of SiO2 on Crystallization of Calcium Ferrites in Fe2O3–CaO–SiO2–Al2O3 System in Cooling Process. Metall Mater Trans B 53, 1904–1919 (2022). https://doi.org/10.1007/s11663-022-02501-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02501-w

Navigation