Skip to main content
Log in

Oxidation Kinetics and Mechanism of Boron in Metallurgical-Grade Silicon Melt by CaO-SiO2 Slag Refining

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Kinetic research on impurity removal from metallurgical-grade silicon is an important theoretical basis for silicon product upgrading and optimization. In this paper, the oxidation mechanism of boron removal from metallurgical-grade silicon by CaO-SiO2 slag at 1823 K was investigated by experimental measurements and ab initio molecular dynamics simulation calculation. By fitting the relationship between refining time and boron concentration in refined silicon, the apparent rate constant and the mass transfer coefficient of boron were obtained. The experimental results showed that there was no significant change in silicon loss rate with increasing refining time. Ab initio molecular dynamics simulation shows that there was an interaction between boron atom and three O atoms in the silicon melt, which results in the oxidation of boron in silicon to borate \(\text{(}{\text{BO}}_{3}^{3-}\text{)}\). The particle trajectories in CaO-SiO2 molten slag were statistically analyzed by Materials Studio software, and it is calculated that the diffusion coefficient \({D}_{\text{B}}\) of boron in CaO-SiO2 slag at 1823 K was found to be 1.29 × 10−8 m2·s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Fang, C.H. Lu, L.Q. Huang, H.X. Lai, J. Chen, J.T. Li, W.H. Ma, P.F. Xing, and X.T. Luo: Sep. Sci. Technol., 2014, vol. 49, pp. 2261–70. https://doi.org/10.1080/01496395.2014.919323.

    Article  CAS  Google Scholar 

  2. J.J. Wu, W.H. Ma, Y.L. Li, B. Yang, D.C. Liu, and Y.N. Dai: Trans. Nonferrous Met. Soc. China., 2013, vol. 23, pp. 260–65. https://doi.org/10.1016/s1003-6326(13)62454-1.

    Article  CAS  Google Scholar 

  3. M. Fang, C.H. Lu, L.Q. Huang, H.X. Lai, J. Chen, J.T. Li, W.H. Ma, P.F. Xing, and X.T. Luo: Ind. Eng. Chem. Res., 2014, vol. 53, pp. 972–79. https://doi.org/10.1021/ie403047m.

    Article  CAS  Google Scholar 

  4. L.Q. Huang, J. Chen, M. Fang, S. Thomas, A. Danaei, X.T. Luo, and M. Barati: J. Clean. Prod., 2018, vol. 186, pp. 718–25. https://doi.org/10.1016/j.jclepro.2018.03.152.

    Article  CAS  Google Scholar 

  5. Y. Tan, X.L. Guo, S. Shi, W. Dong, and D.C. Jiang: Vacuum., 2013, vol. 93, pp. 65–70. https://doi.org/10.1016/j.vacuum.2012.12.010.

    Article  CAS  Google Scholar 

  6. S.D. Hu, Y.C. Dai, A. Gagnoud, Y. Fautrelle, R. Moreau, Z.M. Ren, K. Deng, C.J. Li, and X. Li: J. Alloy. Compd., 2017, vol. 722, pp. 108–15. https://doi.org/10.1016/j.jallcom.2017.06.084.

    Article  CAS  Google Scholar 

  7. J. Dietl: Solar Cells., 1983, vol. 10, pp. 145–54. https://doi.org/10.1016/0379-6787(83)90015-7.

    Article  CAS  Google Scholar 

  8. Q. Wang, W. Dong, Y. Tan, D.C. Jiang, C. Zhang, and X. Peng: Rare Met., 2011, vol. 30, pp. 274–77. https://doi.org/10.1007/s12598-011-0382-6.

    Article  CAS  Google Scholar 

  9. K.X. Wei, D.M. Zheng, W.H. Ma, B. Yang, and Y.N. Dai: SILICON., 2015, vol. 7, pp. 269–74. https://doi.org/10.1007/s12633-014-9228-9.

    Article  CAS  Google Scholar 

  10. Z.F. Xia, J.J. Wu, W.H. Ma, Y. Lei, K.X. Wei, and Y.N. Dai: Sep. Purif. Technol., 2017, vol. 187, pp. 25–33. https://doi.org/10.1016/j.seppur.2017.06.037.

    Article  CAS  Google Scholar 

  11. Y.V. Meteleva-Fischer, Y. Yang, R. Boom, B. Kraaijveld, and H. Kuntzel: JOM., 2012, vol. 64, pp. 957–67. https://doi.org/10.1007/s11837-012-0383-4.

    Article  CAS  Google Scholar 

  12. J.J. Wu, D. Yang, M. Xu, W.H. Ma, Q. Zhou, Z.F. Xia, Y. Lei, K.X. Wei, S.Y. Li, Z.J. Chen, and K.Q. Xie: Sep. Purif. Rev., 2020, vol. 49, pp. 68–88. https://doi.org/10.1080/15422119.2018.1523191.

    Article  CAS  Google Scholar 

  13. S. Shi, Y. Tan, D.C. Jiang, S.Q. Qin, X.L. Guo, and H.K. Asghar: Sep. Purif. Technol., 2015, vol. 152, pp. 32–36. https://doi.org/10.1016/j.seppur.2015.08.002.

    Article  CAS  Google Scholar 

  14. Y.Q. Li and L.F. Zhang: Sep. Purif. Rev., 2021, vol. 50, pp. 115–38. https://doi.org/10.1080/15422119.2019.1623253.

    Article  CAS  Google Scholar 

  15. Y. Delannoy, C. Alemany, K.I. Li, P. Proulx, and C. Trassy: Sol. Energy Mater. Sol. Cells., 2002, vol. 72, pp. 69–75. https://doi.org/10.1016/s0927-0248(01)00151-9.

    Article  CAS  Google Scholar 

  16. B.P. Lee, H.M. Lee, D.H. Park, J.S. Shin, T.U. Yu, and B.M. Moon: Sol. Energy Mater. Sol. Cells., 2011, vol. 95, pp. 56–58. https://doi.org/10.1016/j.solmat.2010.02.011.

    Article  CAS  Google Scholar 

  17. J.J. Wu, Y.L. Li, W.H. Ma, K.X. Wei, B. Yang, and Y.N. Dai: Trans. Nonferrous Met. Soc. China., 2014, vol. 24, pp. 1231–36. https://doi.org/10.1016/s1003-6326(14)63183-6.

    Article  CAS  Google Scholar 

  18. Y.Q. Li, W. Chen, J. Lu, X.H. Lei, and L.F. Zhang: J. Electron. Mater., 2021, vol. 50, pp. 1386–96. https://doi.org/10.1007/s11664-020-08651-4.

    Article  CAS  Google Scholar 

  19. Q. He, J.J. Wu, F. Yang, Y.Q. Zhou, K. Liu, and W.H. Ma: Sep. Purif. Rev., 2021, https://doi.org/10.1080/15422119.2021.1986409.

    Article  Google Scholar 

  20. L.A.V. Teixeira and K. Morita: ISIJ Int., 2009, vol. 49, pp. 783–87. https://doi.org/10.2355/isijinternational.49.783.

    Article  CAS  Google Scholar 

  21. J. Cai, J.T. Li, W.H. Chen, C. Chen, and X.T. Luo: Trans. Nonferrous Met. Soc. China., 2011, vol. 21, pp. 1402–06. https://doi.org/10.1016/s1003-6326(11)60873-x.

    Article  CAS  Google Scholar 

  22. J.J. Wu, K. Liu, M. Xu, W.H. Ma, B. Yang, and Y.N. Dai: J. Min. Metall. B., 2014, vol. 50B, pp. 83–86. https://doi.org/10.2298/jmmb140202005w.

    Article  Google Scholar 

  23. Q. Zhou, J.J. Wu, W.H. Ma, Z.J. Chen, Y. Lei, and K.X. Wei: JOM., 2020, vol. 72, pp. 2670–75. https://doi.org/10.1007/s11837-019-03847-4.

    Article  CAS  Google Scholar 

  24. E. Krystad, K. Tang, and G. Tranell: JOM., 2012, vol. 64, pp. 968–72. https://doi.org/10.1007/s11837-012-0382-5.

    Article  CAS  Google Scholar 

  25. H.X. Lai, L.Q. Huang, C.H. Lu, M. Fang, W.H. Ma, P.F. Xing, J.T. Li, and X.T. Luo: JOM., 2016, vol. 68, pp. 2371–80. https://doi.org/10.1007/s11837-015-1656-5.

    Article  CAS  Google Scholar 

  26. Ø.S. Sortland and M. Tangstad: Metall. Mater. Trans. E., 2014, vol. 1E, pp. 211–25. https://doi.org/10.1007/s40553-014-0021-x.

    Article  CAS  Google Scholar 

  27. L.A.V. Teixeira, Y. Tokuda, T. Yoko, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 777–82. https://doi.org/10.2355/isijinternational.49.777.

    Article  CAS  Google Scholar 

  28. N.Y. He, D. Yang, M. Xu, J.J. Wu, K.X. Wei, and W.H. Ma: Metall. Mater. Trans. B., 2021, vol. 52B, pp. 1830–38. https://doi.org/10.1007/s11663-021-02149-y.

    Article  CAS  Google Scholar 

  29. K. Suzuki, T. Kumagai, and N. Sano: ISIJ Int., 1992, vol. 32, pp. 630–34. https://doi.org/10.2355/isijinternational.32.630.

    Article  CAS  Google Scholar 

  30. H. Nishimoto, Y. Kang, T. Yoshikawa, and K. Morita: High. Temp. Mater. Process., 2012, vol. 31, pp. 471–77. https://doi.org/10.1515/htmp-2012-0083.

    Article  CAS  Google Scholar 

  31. M.S. Islam and M.A. Rhamdhani: Metall. Mater. Trans. B., 2018, vol. 49B, pp. 3171–85. https://doi.org/10.1007/s11663-018-1424-3.

    Article  CAS  Google Scholar 

  32. G.A. Heiser, R.C. Shukla, and E.R. Cowley: Phys. Rev. B., 1986, vol. 33, pp. 2158–62. https://doi.org/10.1103/PhysRevB.33.2158.

    Article  CAS  Google Scholar 

  33. F.M. Wang, J.J. Wu, W.H. Ma, Y. Lei, K.X. Wei, and B. Yang: J. Chem. Thermodyn., 2018, vol. 118, pp. 215–24. https://doi.org/10.1016/j.jct.2017.11.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support on this research from the National Natural Science Foundation of China (22078140), the Talent Training Program of Yunnan of China (202005AC160041), and the major R&D project of Yunnan of China (202002AB0800020102).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jijun Wu or Kuixian Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Q., He, N., Yang, D. et al. Oxidation Kinetics and Mechanism of Boron in Metallurgical-Grade Silicon Melt by CaO-SiO2 Slag Refining. Metall Mater Trans B 53, 1841–1850 (2022). https://doi.org/10.1007/s11663-022-02493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-022-02493-7

Navigation